④NuPlayer播放框架之Renderer源码分析

[时间:2016-11] [状态:Open]
[关键词:android,nuplayer,开源播放器,播放框架,渲染器,render]

0 导读

之前我们分析了NuPlayer的实现代码,本文将重点聚焦于其中的一部分——渲染器(Renderer)。
从功能安排来说,Renderer的主要功能有:

  • 音视频原始数据缓存操作
  • 音频播放(到声卡)
  • 视频显示(到显卡)
  • 音视频同步
  • 其他辅助播放器控制的操作
  • 其他获取渲染状态/属性的接口

接下来主要从Renderer的对外接口和实现说明下其中的处理逻辑。

本文是我的NuPlayer播放框架的第四篇。

1 NuPlayer::Renderer对外接口及主要成员

// code frome ~/frameworks/av/media/libmediaplayerservice/nuplayer/NuPlayerRenderer.h
struct NuPlayer::Renderer : public AHandler {
    Renderer(const sp<MediaPlayerBase::AudioSink> &sink,
             const sp<AMessage> &notify, uint32_t flags = 0);

    static size_t AudioSinkCallback(MediaPlayerBase::AudioSink *audioSink,
            void *data, size_t size, void *me,
            MediaPlayerBase::AudioSink::cb_event_t event);
	// 缓冲音视频原始数据
    void queueBuffer(bool audio,
            const sp<ABuffer> &buffer, const sp<AMessage> &notifyConsumed);

    void queueEOS(bool audio, status_t finalResult);

    status_t setPlaybackSettings(const AudioPlaybackRate &rate /* sanitized */);
    status_t getPlaybackSettings(AudioPlaybackRate *rate /* nonnull */);
    status_t setSyncSettings(const AVSyncSettings &sync, float videoFpsHint);
    status_t getSyncSettings(AVSyncSettings *sync /* nonnull */, float *videoFps /* nonnull */);

    void flush(bool audio, bool notifyComplete);

    void signalTimeDiscontinuity();

    void signalAudioSinkChanged();

    void signalDisableOffloadAudio();
    void signalEnableOffloadAudio();

    void pause();
    void resume();

    void setVideoFrameRate(float fps);

    status_t getCurrentPosition(int64_t *mediaUs);
    int64_t getVideoLateByUs();

    status_t openAudioSink( const sp<AMessage> &format, bool offloadOnly, 
		bool hasVideo, uint32_t flags, bool *isOffloaded);
    void closeAudioSink();

private:
	struct QueueEntry {
        sp<ABuffer> mBuffer;
        sp<AMessage> mNotifyConsumed;
        size_t mOffset;
        status_t mFinalResult;
        int32_t mBufferOrdinal;
    };

    static const int64_t kMinPositionUpdateDelayUs;

    sp<MediaPlayerBase::AudioSink> mAudioSink;
    bool mUseVirtualAudioSink;
    sp<AMessage> mNotify;
    Mutex mLock;
    uint32_t mFlags;
    List<QueueEntry> mAudioQueue; // 音频缓冲
    List<QueueEntry> mVideoQueue; // 视频缓冲
    uint32_t mNumFramesWritten;
    sp<VideoFrameScheduler> mVideoScheduler;
	sp<MediaClock> mMediaClock;
    float mPlaybackRate; // audio track rate

}

首先看到的是Renderer本身是AHandler的子类。还记得之前的AHandler和ALooper配合使用的机制嘛?其中ALooper位于NuPlayer中,变量名为mRendererLooper。

2 NuPlayer中调用的Renderer接口

先回顾下NuPlayer源码解析中的调用接口。

  • 构造/析构函数
  • 设置播放控制参数——setPlaybackSettings/getPlaybackSettings/setVideoFrameRate/setSyncSettings/getSyncSettings
  • AudioSink相关——openAudioSink/closeAudioSink
  • 控制接口——pause/flush/resume/queueEOS
  • 音频状态更新——signalEnableOffloadAudio/signalDisableOffloadAudio
  • 音视频原始数据输入——queueBuffer
    NuPlayer中并未显示调用,而是将Renderer设置给ADecoder使用
if (mVideoDecoder != NULL) {
    mVideoDecoder->setRenderer(mRenderer);
}
if (mAudioDecoder != NULL) {
    mAudioDecoder->setRenderer(mRenderer); 
}

3 Renderer具体接口分析

构造函数喝析构函数

构造函数最主要的是创建一个MediaClock,用于同步和计时。主要代码如下:

    mMediaClock = new MediaClock;
    mPlaybackRate = mPlaybackSettings.mSpeed;
    mMediaClock->setPlaybackRate(mPlaybackRate);

由于AHandler是智能指针,可以不考虑析构函数。不过可以看下代码中实现:

NuPlayer::Renderer::~Renderer() {
    if (offloadingAudio()) {
        mAudioSink->stop(); // 主要是针对AudioSink的处理
        mAudioSink->flush();
        mAudioSink->close();
    }
}

设置播放控制参数类接口

音频回放参数设置-setPlaybackSettings/getPlaybackSettings

主要接口定义及参数如下:

status_t setPlaybackSettings(const AudioPlaybackRate &rate /* sanitized */);
status_t getPlaybackSettings(AudioPlaybackRate *rate /* nonnull */);

struct AudioPlaybackRate {
    float mSpeed; // 播放倍速
    float mPitch; // 声调参数
    enum AudioTimestretchStretchMode  mStretchMode; // 拉伸模式
    enum AudioTimestretchFallbackMode mFallbackMode; // 备用模式
};

从实际接口含义来看主要控制音频播放速率。最终设置函数将参数传递给mMediaClock->setPlaybackRate函数。

视频播放帧率参数-setVideoFrameRate

函数原型如下:void setVideoFrameRate(float fps);。只有一个参数视频播放帧率fps,最终实现函数将该参数设置给mVideoScheduler。实现如下:

void NuPlayer::Renderer::onSetVideoFrameRate(float fps) {
    if (mVideoScheduler == NULL) {
        mVideoScheduler = new VideoFrameScheduler();
    }
    mVideoScheduler->init(fps);
}

音视频同步参数-setSyncSettings/getSyncSettings

接口声明及主要参数如下:

status_t setSyncSettings(const AVSyncSettings &sync, float videoFpsHint);
status_t getSyncSettings(AVSyncSettings *sync /* nonnull */, float *videoFps /* nonnull */);

// from ~/frameworks/av/include/media/AVSyncSettings.h
struct AVSyncSettings {
    AVSyncSource mSource; // 同步基准
    AVSyncAudioAdjustMode mAudioAdjustMode; // 音频调整方式
    float mTolerance; // 最大容忍的调速时间
    AVSyncSettings()
        : mSource(AVSYNC_SOURCE_DEFAULT),
          mAudioAdjustMode(AVSYNC_AUDIO_ADJUST_MODE_DEFAULT),
          mTolerance(.044f) { }
};

看代码实现就会发现,Renderer中并没有实现setSyncSettings,只是判断了必须使用必须使用默认的同步方式,判断逻辑如下:

status_t NuPlayer::Renderer::onConfigSync(const AVSyncSettings &sync, float videoFpsHint __unused) {
    if (sync.mSource != AVSYNC_SOURCE_DEFAULT) {
        return BAD_VALUE;
    }
    // TODO: support sync sources
    return INVALID_OPERATION;
}

至于这里涉及的MediaClock、AudioSink、VideoFrameSchedule后续有专门介绍。

AudioSink相关-openAudioSink/closeAudioSink

主要用于创建和关闭AudioSink,声明如下:

status_t openAudioSink(
        const sp<AMessage> &format,
        bool offloadOnly,
        bool hasVideo,
        uint32_t flags,
        bool *isOffloaded);
void closeAudioSink();

后续会解释两个接口。

控制接口-pause/flush/resume/queueEOS

pause/resume接口

暂停和恢复接口,实现类似,pause接口最终实现是在onPause中:

void NuPlayer::Renderer::onPause() {
    if (mPaused) {
        return;
    }

    {
        Mutex::Autolock autoLock(mLock);
        // we do not increment audio drain generation so that we fill audio buffer during pause.
        ++mVideoDrainGeneration;
        prepareForMediaRenderingStart_l();
        mPaused = true;
        mMediaClock->setPlaybackRate(0.0); // 设置成0.0,后面解释为什么
    }

    mDrainAudioQueuePending = false;
    mDrainVideoQueuePending = false;

    // Note: audio data may not have been decoded, and the AudioSink may not be opened.
    mAudioSink->pause();
    startAudioOffloadPauseTimeout();
}

其最终通过mMediaClock->setPlaybackRate和mAudioSink->pause接口实现暂停功能。
resume接口最终实现是在onResume中,代码如下:

void NuPlayer::Renderer::onResume() {
    if (!mPaused) {
        return;
    }

    // Note: audio data may not have been decoded, and the AudioSink may not be opened.
    cancelAudioOffloadPauseTimeout();
    if (mAudioSink->ready()) {
        status_t err = mAudioSink->start();
        if (err != OK) {
            ALOGE("cannot start AudioSink err %d", err);
            notifyAudioTearDown(kDueToError);
        }
    }

    {
        Mutex::Autolock autoLock(mLock);
        mPaused = false;
        // rendering started message may have been delayed if we were paused.
        if (mRenderingDataDelivered) {
            notifyIfMediaRenderingStarted_l();
        }
        // configure audiosink as we did not do it when pausing
        if (mAudioSink != NULL && mAudioSink->ready()) {
            mAudioSink->setPlaybackRate(mPlaybackSettings);
        }

        mMediaClock->setPlaybackRate(mPlaybackRate);

        if (!mAudioQueue.empty()) {
            postDrainAudioQueue_l();
        }
    }

    if (!mVideoQueue.empty()) {
        postDrainVideoQueue();
    }
}

基本上是通过mAudioSink->start()和mMediaClock->setPlaybackRate实现,这过程中也有音视频队列清空的操作。

flush接口

主要分为针对音频的flush和针对视频的flush,具体实现时,音频主要是使用AudioSink的pause/flush/start接口,视频主要是使用清空缓冲队列和mVideoScheduler->restart实现。详细实现建议参考NuPlayer::Renderer::onFlush的代码。

queueEOS

添加流结束标志,最终实现是在onQueueEOS接口中,代码如下:

void NuPlayer::Renderer::onQueueEOS(const sp<AMessage> &msg) {
    int32_t audio;
    CHECK(msg->findInt32("audio", &audio));

    if (dropBufferIfStale(audio, msg)) {
        return;
    }

    int32_t finalResult;
    CHECK(msg->findInt32("finalResult", &finalResult));

    QueueEntry entry;
    entry.mOffset = 0;
    entry.mFinalResult = finalResult;

    if (audio) { // 音频EOS
        Mutex::Autolock autoLock(mLock);
        if (mAudioQueue.empty() && mSyncQueues) {
            syncQueuesDone_l();
        }
        mAudioQueue.push_back(entry);
        postDrainAudioQueue_l();
    } else { // 视频EOS
        if (mVideoQueue.empty() && getSyncQueues()) {
            Mutex::Autolock autoLock(mLock);
            syncQueuesDone_l();
        }
        mVideoQueue.push_back(entry);
        postDrainVideoQueue();
    }
}

音视频原始数据输入——queueBuffer

在NuPlayer中没看到这个函数调用,但总体来说这个应该由音视频解码器调用,主要将解码之后的音视频原始数据通知显示端并作缓存和同步。主要实现代码如下:(有删减)

void NuPlayer::Renderer::onQueueBuffer(const sp<AMessage> &msg) {
    int32_t audio;
    CHECK(msg->findInt32("audio", &audio));

    if (dropBufferIfStale(audio, msg)) {
        return;
    }

    sp<ABuffer> buffer;
    CHECK(msg->findBuffer("buffer", &buffer)); // 传入的数据存储在这里

    QueueEntry entry;
    entry.mBuffer = buffer;
    entry.mNotifyConsumed = notifyConsumed;
    entry.mOffset = 0;
    entry.mFinalResult = OK;
    entry.mBufferOrdinal = ++mTotalBuffersQueued;
	// 将数据放到音频或者视频缓冲队列中
    if (audio) {
        Mutex::Autolock autoLock(mLock);
        mAudioQueue.push_back(entry);
        postDrainAudioQueue_l();
    } else {
        mVideoQueue.push_back(entry);
        postDrainVideoQueue();
    }
	// 后续代码是做同步的
    Mutex::Autolock autoLock(mLock);
    if (!mSyncQueues || mAudioQueue.empty() || mVideoQueue.empty()) {
        return;
    }

    sp<ABuffer> firstAudioBuffer = (*mAudioQueue.begin()).mBuffer;
    sp<ABuffer> firstVideoBuffer = (*mVideoQueue.begin()).mBuffer;

    if (firstAudioBuffer == NULL || firstVideoBuffer == NULL) {
        // EOS signalled on either queue.
        syncQueuesDone_l();
        return;
    }

    int64_t firstAudioTimeUs;
    int64_t firstVideoTimeUs;
    CHECK(firstAudioBuffer->meta()
            ->findInt64("timeUs", &firstAudioTimeUs));
    CHECK(firstVideoBuffer->meta()
            ->findInt64("timeUs", &firstVideoTimeUs));

    int64_t diff = firstVideoTimeUs - firstAudioTimeUs;

    ALOGV("queueDiff = %.2f secs", diff / 1E6);

    if (diff > 100000ll) { // 
        // Audio data starts More than 0.1 secs before video.
        // Drop some audio.

        (*mAudioQueue.begin()).mNotifyConsumed->post();
        mAudioQueue.erase(mAudioQueue.begin());
        return;
    }

    syncQueuesDone_l();
}

4 MediaClock简介

看名字,MediaClock有点时钟同步的感觉,说白了就是一个多媒体时钟,是libstagefright提供的一个公共类。具体接口如下:

struct MediaClock : public RefBase {
    MediaClock();

    void setStartingTimeMedia(int64_t startingTimeMediaUs);
    void clearAnchor();
    void updateAnchor( int64_t anchorTimeMediaUs,
            int64_t anchorTimeRealUs, int64_t maxTimeMediaUs = INT64_MAX);

    void updateMaxTimeMedia(int64_t maxTimeMediaUs);

    void setPlaybackRate(float rate);
    float getPlaybackRate() const;

    // 查询与实际时间|realUs|对应的多媒体时间,并将结果保存在|outMediaUs|中
    status_t getMediaTime( int64_t realUs, int64_t *outMediaUs,
            bool allowPastMaxTime = false) const;
    // query real time corresponding to media time 查询与多媒体时间|targetMediaUs|对应的实际时间,结果保存在|outRealUs|中
    status_t getRealTimeFor(int64_t targetMediaUs, int64_t *outRealUs) const;

private:
    int64_t mAnchorTimeMediaUs;
    int64_t mAnchorTimeRealUs;
    int64_t mMaxTimeMediaUs;
    int64_t mStartingTimeMediaUs;

    float mPlaybackRate;
};

我把这个类的实现分为两部分,不需要逻辑判断的赋值或返回代码,需要额外计算的代码。先看简单的部分,函数功能主要是赋值和返回参数。

// code from ~/frameworks/av/media/libstagefright/MediaClock.cpp
MediaClock::MediaClock() : mAnchorTimeMediaUs(-1), mAnchorTimeRealUs(-1),
      mMaxTimeMediaUs(INT64_MAX), mStartingTimeMediaUs(-1), mPlaybackRate(1.0) {}

MediaClock::~MediaClock() {}

void MediaClock::setStartingTimeMedia(int64_t startingTimeMediaUs) {
    mStartingTimeMediaUs = startingTimeMediaUs;
}

void MediaClock::clearAnchor() {
    mAnchorTimeMediaUs = -1;
    mAnchorTimeRealUs = -1;
}

void MediaClock::updateMaxTimeMedia(int64_t maxTimeMediaUs) {
    mMaxTimeMediaUs = maxTimeMediaUs;
}

float MediaClock::getPlaybackRate() const {
    Mutex::Autolock autoLock(mLock);
    return mPlaybackRate;
}

这部分代码实现了时钟的主要功能,对多媒体时间和实际时间做了对应关系。(注意代码部分有删减,仅保留核心逻辑)

void MediaClock::updateAnchor(
        int64_t anchorTimeMediaUs, // 锚点的播放时间戳
        int64_t anchorTimeRealUs, // 锚点的实际时间
        int64_t maxTimeMediaUs) {
    int64_t nowUs = ALooper::GetNowUs(); // 当前系统时钟
    int64_t nowMediaUs = anchorTimeMediaUs + (nowUs - anchorTimeRealUs) * (double)mPlaybackRate; // 转换为当前值,误差低

    if (maxTimeMediaUs != -1) {
        mMaxTimeMediaUs = maxTimeMediaUs;
    }
    mAnchorTimeRealUs = nowUs;
    mAnchorTimeMediaUs = nowMediaUs;
}

void MediaClock::setPlaybackRate(float rate) {
    CHECK_GE(rate, 0.0);
    if (mAnchorTimeRealUs == -1) {
        mPlaybackRate = rate;
        return;
    }

    int64_t nowUs = ALooper::GetNowUs();
    mAnchorTimeMediaUs += (nowUs - mAnchorTimeRealUs) * (double)mPlaybackRate;
    mAnchorTimeRealUs = nowUs;
    mPlaybackRate = rate;
}

// 以下两个函数完成MediaTime <-->realTime的映射,具体原理还是来自updateAnchor
status_t MediaClock::getMediaTime(int64_t realUs, int64_t *outMediaUs, bool allowPastMaxTime) const {
    return getMediaTime_l(realUs, outMediaUs, allowPastMaxTime);
}

status_t MediaClock::getMediaTime_l(int64_t realUs, int64_t *outMediaUs, bool allowPastMaxTime) const {
    if (mAnchorTimeRealUs == -1) {
        return NO_INIT;
    }

    int64_t mediaUs = mAnchorTimeMediaUs
            + (realUs - mAnchorTimeRealUs) * (double)mPlaybackRate;
    if (mediaUs > mMaxTimeMediaUs && !allowPastMaxTime) {
        mediaUs = mMaxTimeMediaUs;
    }
    if (mediaUs < mStartingTimeMediaUs) {
        mediaUs = mStartingTimeMediaUs;
    }
    if (mediaUs < 0) {
        mediaUs = 0;
    }
    *outMediaUs = mediaUs;
    return OK;
}

status_t MediaClock::getRealTimeFor(int64_t targetMediaUs, int64_t *outRealUs) const {
    if (outRealUs == NULL) {
        return BAD_VALUE;
    }

    if (mPlaybackRate == 0.0) {
        return NO_INIT;
    }

    int64_t nowUs = ALooper::GetNowUs();
    int64_t nowMediaUs;
    status_t status =
            getMediaTime_l(nowUs, &nowMediaUs, true /* allowPastMaxTime */);
    if (status != OK) {
        return status;
    }
    *outRealUs = (targetMediaUs - nowMediaUs) / (double)mPlaybackRate + nowUs;
    return OK;
}

还记得在前面解释Renderer::pause实现的时候把mPlaybackRate设置成0嘛,看到上面的计算代码基本上就可以明白了。
比较有意思的是针对mPlaybackRate的处理及Renderer调用的逻辑。下面是获得当前播放位置的函数实现

status_t NuPlayer::Renderer::getCurrentPosition(int64_t *mediaUs) {
	// 注意是直接调用的MediaClock::getMediaTime()
    status_t result = mMediaClock->getMediaTime(ALooper::GetNowUs(), mediaUs);
    if (result == OK) {
        return result;
    }

    // MediaClock未初始化,尝试初始化之
    {
        AudioTimestamp ts;// 另一种时钟计算方法
        status_t res = mAudioSink->getTimestamp(ts);
        if (res != OK) {
            return result;
        }

        // AudioSink has rendered some frames.
        int64_t nowUs = ALooper::GetNowUs();
        int64_t nowMediaUs = mAudioSink->getPlayedOutDurationUs(nowUs)
                + mAudioFirstAnchorTimeMediaUs;
        mMediaClock->updateAnchor(nowMediaUs, nowUs, -1);
    }

    return mMediaClock->getMediaTime(ALooper::GetNowUs(), mediaUs);
}

到这里基本解释清楚MediaClock是做什么的,但是疑问还在,音视频同步在哪里,怎么做到的?

5 AudioSink简介

以下资料来在Google group,内容如下:

AudioTrack is the hardware audio sink. AudioSink is used for in-memory
decode and potentially other applications where output doesn't go
straight to hardware.

翻译过来就是AudioTrack是一种特殊的AudioSink,与硬件对应;而AudioSink是用于内存解码的,所得数据不直接输出到音频设备上。
在之前文章[MediaPlayer Interface&State](../5\ MediaPlayer\ Interface&State.md)中可以看到MediaPlayerBase里面有一个抽象类定义,AudioSink。下面是具体的接口:

class AudioSink : public RefBase {
public:
    enum cb_event_t {
        CB_EVENT_FILL_BUFFER,   // Request to write more data to buffer.
        CB_EVENT_STREAM_END,    // Sent after all the buffers queued in AF and HW are played
                                // back (after stop is called)
        CB_EVENT_TEAR_DOWN      // The AudioTrack was invalidated due to use case change:
                                // Need to re-evaluate offloading options
    };

    // Callback returns the number of bytes actually written to the buffer.
    typedef size_t (*AudioCallback)(
            AudioSink *audioSink, void *buffer, size_t size, void *cookie, cb_event_t event);

    virtual             ~AudioSink() {}
    virtual bool        ready() const = 0; // audio output is open and ready
    virtual ssize_t     bufferSize() const = 0;
    virtual ssize_t     frameCount() const = 0;
    virtual ssize_t     channelCount() const = 0;
    virtual ssize_t     frameSize() const = 0;
    virtual uint32_t    latency() const = 0;
    virtual float       msecsPerFrame() const = 0;
    virtual status_t    getPosition(uint32_t *position) const = 0;
    virtual status_t    getTimestamp(AudioTimestamp &ts) const = 0;
    virtual int64_t     getPlayedOutDurationUs(int64_t nowUs) const = 0;
    virtual status_t    getFramesWritten(uint32_t *frameswritten) const = 0;
    virtual audio_session_t getSessionId() const = 0;
    virtual audio_stream_type_t getAudioStreamType() const = 0;
    virtual uint32_t    getSampleRate() const = 0;
    virtual int64_t     getBufferDurationInUs() const = 0;

    // If no callback is specified, use the "write" API below to submit audio data.
    virtual status_t    open(
            uint32_t sampleRate, int channelCount, audio_channel_mask_t channelMask,
            audio_format_t format=AUDIO_FORMAT_PCM_16_BIT,
            int bufferCount=DEFAULT_AUDIOSINK_BUFFERCOUNT,
            AudioCallback cb = NULL,
            void *cookie = NULL,
            audio_output_flags_t flags = AUDIO_OUTPUT_FLAG_NONE,
            const audio_offload_info_t *offloadInfo = NULL,
            bool doNotReconnect = false,
            uint32_t suggestedFrameCount = 0) = 0;

    virtual status_t    start() = 0;

    /* Input parameter |size| is in byte units stored in |buffer|.
     * Data is copied over and actual number of bytes written (>= 0)
     * is returned, or no data is copied and a negative status code
     * is returned (even when |blocking| is true).
     * When |blocking| is false, AudioSink will immediately return after
     * part of or full |buffer| is copied over.
     * When |blocking| is true, AudioSink will wait to copy the entire
     * buffer, unless an error occurs or the copy operation is
     * prematurely stopped.
     */
    virtual ssize_t     write(const void* buffer, size_t size, bool blocking = true) = 0;

    virtual void        stop() = 0;
    virtual void        flush() = 0;
    virtual void        pause() = 0;
    virtual void        close() = 0;

    virtual status_t    setPlaybackRate(const AudioPlaybackRate& rate) = 0;
    virtual status_t    getPlaybackRate(AudioPlaybackRate* rate /* nonnull */) = 0;
    virtual bool        needsTrailingPadding() { return true; }

    virtual status_t    setParameters(const String8& /* keyValuePairs */) { return NO_ERROR; }
    virtual String8     getParameters(const String8& /* keys */) { return String8::empty(); }
};

在Renderer的构造函数中可以看到AudioSink是由NuPlayer传递过来的。明显的这仅仅是通过抽象实现了在Renderer中操作AudioSink及其子类的逻辑。当然在实际使用中,AudioSink也可以作为播放时间的参考,比如上面的getCurrentPosition的实现。这里面的open/close/start/stop/flush/pause/write接口均在Renderer中调用过,后续针对同步的解释会详细说明的。

6 VideoFrameScheduler简介

看名字,感觉这个功能跟MediaClock类似,只是专门针对视频帧的处理逻辑,这也是libstagefright提供的一个公共类,实际上是做视频渲染调整的,以保证视频渲染时间在VSYNC时间之后,防止出现画面撕裂的情况。其对外接口如下:

struct VideoFrameScheduler : public RefBase {
    VideoFrameScheduler();

    // (re)initialize scheduler 初始化,给定帧率
    void init(float videoFps = -1);
    // 仅在视频渲染时间不连续的情况下使用,比如seek
    void restart();
    // 通过renderTime计算视频帧的调整时间(单位纳秒)
    nsecs_t schedule(nsecs_t renderTime);

    // 返回主屏的垂直同步间隔
    nsecs_t getVsyncPeriod();
    // 返回帧率
    float getFrameRate();
    void release();
}

内部实现我就不做解释了,基本意思还是从Renderer的调用中说起。Renderer中主要调用了VideoFrameScheduler的以下接口:

mVideoScheduler = new VideoFrameScheduler();
mVideoScheduler->init(fps);

mVideoScheduler->restart(); // 以下调用都在postDrainVideoQueue中
realTimeUs = mVideoScheduler->schedule(realTimeUs * 1000) / 1000;
int64_t twoVsyncsUs = 2 * (mVideoScheduler->getVsyncPeriod() / 1000);

7 音视频同步时如何实现的?

从Renderer接口层来看,没有任何关于同步处理的接口,仅有有限的几个控制接口flush/pause/resume,以及queueBuffer/queueEOS接口。同步问题的核心就在于ALooper-AHandler机制。其实真正的同步都是在消息循环的响应函数里实现的。先看音频。

Renderer中的音频同步机制

起始位置从音频PCM数据进入开始,处理在Renderer::queueBuffer()中,最终发送了kWhatQueueBuffer消息。这个消息的实际处理函数是Renderer::onQueueBuffer()。实际代码在“音视频原始数据输入——queueBuffer”中有,这里仅针对音频流程解释下。 基本逻辑很简单,保存传入的buffer参数,并通知输出下AudioQueue。

QueueEntry entry; 
Mutex::Autolock autoLock(mLock);
mAudioQueue.push_back(entry);
postDrainAudioQueue_l();

下面看看postDrainAudioQueue_l的实现,内部实现逻辑基本上就是边界判断加上发送kWhatDrainAudioQueue消息。

void NuPlayer::Renderer::postDrainAudioQueue_l(int64_t delayUs) {
    if (mAudioQueue.empty()) return;

    mDrainAudioQueuePending = true;
    sp<AMessage> msg = new AMessage(kWhatDrainAudioQueue, this);
    msg->setInt32("drainGeneration", mAudioDrainGeneration);
    msg->post(delayUs);
}

那就继续查看下这个消息如何处理的。

        case kWhatDrainAudioQueue:
        {
            mDrainAudioQueuePending = false;
            if (onDrainAudioQueue()) {
                uint32_t numFramesPlayed;
                uint32_t numFramesPendingPlayout = mNumFramesWritten - numFramesPlayed;

                // 这里是audio sink中缓存了多长的可用于播放的数据
                int64_t delayUs = mAudioSink->msecsPerFrame() * numFramesPendingPlayout * 1000ll;
                if (mPlaybackRate > 1.0f) {
                    delayUs /= mPlaybackRate;
                }

                // 利用一半的延时来保证下次刷新时间(注意时间上有重叠)
                delayUs /= 2;
                // 参考buffer大小来估计最大的延时时间
                const int64_t maxDrainDelayUs = std::max(
                        mAudioSink->getBufferDurationInUs(), (int64_t)500000 /* half second */);
                ALOGD_IF(delayUs > maxDrainDelayUs, "postDrainAudioQueue long delay: %lld > %lld",
                        (long long)delayUs, (long long)maxDrainDelayUs);
                Mutex::Autolock autoLock(mLock);
                postDrainAudioQueue_l(delayUs); // 这里同一个消息重发了
            }
            break;
        }

到这里,貌似还是没有同步的机制,不过我们已经知道这个音频播放消息的触发机制了,在queueBuffer和消息处理函数中都会触发,基本上就是定时器。还有最后一个函数onDrainAudioQueue()。下面是代码:

bool NuPlayer::Renderer::onDrainAudioQueue() {
    uint32_t numFramesPlayed;
    if (mAudioSink->getPosition(&numFramesPlayed) != OK) {      
        drainAudioQueueUntilLastEOS();
        ALOGW("onDrainAudioQueue(): audio sink is not ready");
        return false;
    }

    uint32_t prevFramesWritten = mNumFramesWritten;
    while (!mAudioQueue.empty()) {
        QueueEntry *entry = &*mAudioQueue.begin();

        mLastAudioBufferDrained = entry->mBufferOrdinal;

        if (entry->mBuffer == NULL) {
			// 删除针对EOS的处理代码            
        }

        // ignore 0-sized buffer which could be EOS marker with no data
        if (entry->mOffset == 0 && entry->mBuffer->size() > 0) {
            int64_t mediaTimeUs;
            CHECK(entry->mBuffer->meta()->findInt64("timeUs", &mediaTimeUs));
            ALOGV("onDrainAudioQueue: rendering audio at media time %.2f secs",
                    mediaTimeUs / 1E6);
            onNewAudioMediaTime(mediaTimeUs);
        }

        size_t copy = entry->mBuffer->size() - entry->mOffset;
        ssize_t written = mAudioSink->write(entry->mBuffer->data() + entry->mOffset,
                                            copy, false /* blocking */);
        if (written < 0) {/* ...忽略异常处理部分代码 */}

        entry->mOffset += written;
        size_t remainder = entry->mBuffer->size() - entry->mOffset;
        if ((ssize_t)remainder < mAudioSink->frameSize()) {
            if (remainder > 0) {// 这是直接凑成完整的一帧音频
                ALOGW("Corrupted audio buffer has fractional frames, discarding %zu bytes.", remainder);
                entry->mOffset += remainder;
                copy -= remainder;
            }

            entry->mNotifyConsumed->post();
            mAudioQueue.erase(mAudioQueue.begin());
            entry = NULL;
        }

        size_t copiedFrames = written / mAudioSink->frameSize();
        mNumFramesWritten += copiedFrames;

        {
            Mutex::Autolock autoLock(mLock);
            int64_t maxTimeMedia;
            maxTimeMedia = mAnchorTimeMediaUs +
                        (int64_t)(max((long long)mNumFramesWritten - mAnchorNumFramesWritten, 0LL)
                                * 1000LL * mAudioSink->msecsPerFrame());
            mMediaClock->updateMaxTimeMedia(maxTimeMedia);

            notifyIfMediaRenderingStarted_l();
        }

        if (written != (ssize_t)copy) {
            // A short count was received from AudioSink::write()
            //
            // AudioSink write is called in non-blocking mode.
            // It may return with a short count when:
            //
            // 1) Size to be copied is not a multiple of the frame size. Fractional frames are
            //    discarded.
            // 2) The data to be copied exceeds the available buffer in AudioSink.
            // 3) An error occurs and data has been partially copied to the buffer in AudioSink.
            // 4) AudioSink is an AudioCache for data retrieval, and the AudioCache is exceeded.

            // (Case 1)
            // Must be a multiple of the frame size.  If it is not a multiple of a frame size, it
            // needs to fail, as we should not carry over fractional frames between calls.
            CHECK_EQ(copy % mAudioSink->frameSize(), 0);

            // (Case 2, 3, 4)
            // Return early to the caller.
            // Beware of calling immediately again as this may busy-loop if you are not careful.
            ALOGV("AudioSink write short frame count %zd < %zu", written, copy);
            break;
        }
    }

    // calculate whether we need to reschedule another write.
    bool reschedule = !mAudioQueue.empty()
            && (!mPaused
                || prevFramesWritten != mNumFramesWritten); // permit pause to fill buffers
    //ALOGD("reschedule:%d  empty:%d  mPaused:%d  prevFramesWritten:%u  mNumFramesWritten:%u",
    //        reschedule, mAudioQueue.empty(), mPaused, prevFramesWritten, mNumFramesWritten);
    return reschedule;
}

这里面比较主要的更新是onNewAudioMediaTimemNumFramesWritten字段。
剩下的一部分代码是关于异常边界情况下的音视频处理逻辑:

    sp<ABuffer> firstAudioBuffer = (*mAudioQueue.begin()).mBuffer;
    sp<ABuffer> firstVideoBuffer = (*mVideoQueue.begin()).mBuffer;

    if (firstAudioBuffer == NULL || firstVideoBuffer == NULL) {
        // 对于一个队列为空的情况,通知另个一队列EOS
        syncQueuesDone_l();
        return;
    }

    int64_t firstAudioTimeUs;
    int64_t firstVideoTimeUs;
    CHECK(firstAudioBuffer->meta()
            ->findInt64("timeUs", &firstAudioTimeUs));
    CHECK(firstVideoBuffer->meta()
            ->findInt64("timeUs", &firstVideoTimeUs));

    int64_t diff = firstVideoTimeUs - firstAudioTimeUs;
    if (diff > 100000ll) {
        // 音频数据时间戳比视频数据早0.1s,

        (*mAudioQueue.begin()).mNotifyConsumed->post();
        mAudioQueue.erase(mAudioQueue.begin());
        return;
    }

    syncQueuesDone_l();

Renderer中的视频同步部分

和音频同步类似,入口在在Renderer::queueBuffer(),主要区分在Renderer::onQueueBuffer()中,代码如下:

// 如果是视频,则将数据存放到视频队列,然后安排刷新
mVideoQueue.push_back(entry);
postDrainVideoQueue();

下面按照之前的思路继续分析,接下来是postDrainVideoQueue实现,主要音视频同步逻辑位于这里。

void NuPlayer::Renderer::postDrainVideoQueue() {
    if (mVideoQueue.empty()) {
        return;
    }

    QueueEntry &entry = *mVideoQueue.begin();

    sp<AMessage> msg = new AMessage(kWhatDrainVideoQueue, this); //这是实际处理视频缓冲区和显示的消息
    msg->setInt32("drainGeneration", getDrainGeneration(false /* audio */));

    if (entry.mBuffer == NULL) {
        // EOS doesn't carry a timestamp.
        msg->post();
        mDrainVideoQueuePending = true;
        return;
    }

    bool needRepostDrainVideoQueue = false;
    int64_t delayUs;
    int64_t nowUs = ALooper::GetNowUs();
    int64_t realTimeUs;
	int64_t mediaTimeUs;
    CHECK(entry.mBuffer->meta()->findInt64("timeUs", &mediaTimeUs));
    if (mFlags & FLAG_REAL_TIME) {        
        realTimeUs = mediaTimeUs;
    } else {
        {
            Mutex::Autolock autoLock(mLock);
            if (mAnchorTimeMediaUs < 0) { // 同步基准未设置的情况下,直接显示
                mMediaClock->updateAnchor(mediaTimeUs, nowUs, mediaTimeUs);
                mAnchorTimeMediaUs = mediaTimeUs;
                realTimeUs = nowUs;
            } else if (!mVideoSampleReceived) { // 第一帧未显示前,直接显示
                // Always render the first video frame.
                realTimeUs = nowUs;
            } else if (mAudioFirstAnchorTimeMediaUs < 0 // 音频未播放之前,以视频为准
                || mMediaClock->getRealTimeFor(mediaTimeUs, &realTimeUs) == OK) {
                realTimeUs = getRealTimeUs(mediaTimeUs, nowUs);
            } else if (mediaTimeUs - mAudioFirstAnchorTimeMediaUs >= 0) { // 视频超前的情况下,等待
                needRepostDrainVideoQueue = true; 
                realTimeUs = nowUs;
            } else {
                realTimeUs = nowUs;
            }
        }

        // Heuristics to handle situation when media time changed without a
        // discontinuity. If we have not drained an audio buffer that was
        // received after this buffer, repost in 10 msec. Otherwise repost
        // in 500 msec.
        delayUs = realTimeUs - nowUs;
        int64_t postDelayUs = -1;
        if (delayUs > 500000) {
            postDelayUs = 500000;
            if (mHasAudio && (mLastAudioBufferDrained - entry.mBufferOrdinal) <= 0) {
                postDelayUs = 10000;
            }
        } else if (needRepostDrainVideoQueue) {
            // CHECK(mPlaybackRate > 0);
            // CHECK(mAudioFirstAnchorTimeMediaUs >= 0);
            // CHECK(mediaTimeUs - mAudioFirstAnchorTimeMediaUs >= 0);
            postDelayUs = mediaTimeUs - mAudioFirstAnchorTimeMediaUs;
            postDelayUs /= mPlaybackRate;
        }

        if (postDelayUs >= 0) {
            msg->setWhat(kWhatPostDrainVideoQueue);
            msg->post(postDelayUs);
            mVideoScheduler->restart();
            ALOGI("possible video time jump of %dms or uninitialized media clock, retrying in %dms",
                    (int)(delayUs / 1000), (int)(postDelayUs / 1000));
            mDrainVideoQueuePending = true;
            return;
        }
    }

    realTimeUs = mVideoScheduler->schedule(realTimeUs * 1000) / 1000;
    int64_t twoVsyncsUs = 2 * (mVideoScheduler->getVsyncPeriod() / 1000);

    delayUs = realTimeUs - nowUs;
	// 上面代码的主要目的是计算这个延时
    ALOGW_IF(delayUs > 500000, "unusually high delayUs: %" PRId64, delayUs);
    // post 2 display refreshes before rendering is due
    msg->post(delayUs > twoVsyncsUs ? delayUs - twoVsyncsUs : 0);

    mDrainVideoQueuePending = true;
}

这里主要的是发送了一个延时消息kWhatDrainVideoQueue,下面是如何处理的代码:

        case kWhatDrainVideoQueue:
        {
            int32_t generation;
            CHECK(msg->findInt32("drainGeneration", &generation));
            if (generation != getDrainGeneration(false /* audio */)) {
                break;
            }

            mDrainVideoQueuePending = false;
            onDrainVideoQueue();
            postDrainVideoQueue(); // 注意这里相当于定时器的实现了
            break;
        }

直接调用onDrainVideoQueue函数,看看如何实现的:

void NuPlayer::Renderer::onDrainVideoQueue() {
    if (mVideoQueue.empty()) {
        return;
    }

    QueueEntry *entry = &*mVideoQueue.begin();
    if (entry->mBuffer == NULL) {
        // ...省略针对EOS 处理
    }

    int64_t nowUs = ALooper::GetNowUs();
    int64_t realTimeUs;
    int64_t mediaTimeUs = -1;
    if (mFlags & FLAG_REAL_TIME) {
        CHECK(entry->mBuffer->meta()->findInt64("timeUs", &realTimeUs));
    } else {
        CHECK(entry->mBuffer->meta()->findInt64("timeUs", &mediaTimeUs));
        realTimeUs = getRealTimeUs(mediaTimeUs, nowUs);
    }

    bool tooLate = false;
    if (!mPaused) {
        setVideoLateByUs(nowUs - realTimeUs);
        tooLate = (mVideoLateByUs > 40000);

        if (tooLate) {
            ALOGV("video late by %lld us (%.2f secs)",
                 (long long)mVideoLateByUs, mVideoLateByUs / 1E6);
        } else {
            int64_t mediaUs = 0;
            mMediaClock->getMediaTime(realTimeUs, &mediaUs);
            ALOGV("rendering video at media time %.2f secs",
                    (mFlags & FLAG_REAL_TIME ? realTimeUs :
                    mediaUs) / 1E6);

            if (!(mFlags & FLAG_REAL_TIME)
                    && mLastAudioMediaTimeUs != -1
                    && mediaTimeUs > mLastAudioMediaTimeUs) {
                // If audio ends before video, video continues to drive media clock.
                // Also smooth out videos >= 10fps.
                mMediaClock->updateMaxTimeMedia(mediaTimeUs + 100000);
            }
        }
    } else {
        setVideoLateByUs(0);
        if (!mVideoSampleReceived && !mHasAudio) {
            // This will ensure that the first frame after a flush won't be used as anchor
            // when renderer is in paused state, because resume can happen any time after seek.
            Mutex::Autolock autoLock(mLock);
            clearAnchorTime_l();
        }
    }

    // Always render the first video frame while keeping stats on A/V sync.
    if (!mVideoSampleReceived) {
        realTimeUs = nowUs;
        tooLate = false;
    }

    entry->mNotifyConsumed->setInt64("timestampNs", realTimeUs * 1000ll); // 上面所有计算的参数在这里使用了
    entry->mNotifyConsumed->setInt32("render", !tooLate);
    entry->mNotifyConsumed->post(); // 注意这里,实际是向解码器发送消息,用于显示
    mVideoQueue.erase(mVideoQueue.begin());
    entry = NULL;

    mVideoSampleReceived = true;

    if (!mPaused) { // 这里是通知NuPlayer层渲染开始
        if (!mVideoRenderingStarted) {
            mVideoRenderingStarted = true;
            notifyVideoRenderingStart();
        }
        Mutex::Autolock autoLock(mLock);
        notifyIfMediaRenderingStarted_l();
    }
}

到这里,小结下,读完这部分代码发现,NuPlayer::Renderer使用的以视频为基准的同步机制,音频晚了直接丢包,视频需要显示。同步主要位于视频缓冲区处理部分onDrainVideoQueue和音频缓冲区处理部分onDrainVideoQueue中。音视频的渲染都是采用类似定时器的机制,只不过视频显示需要依赖于实际解码器,音频播放需要依赖于AudioSink的接口。

8 总结

本文主要参考NuPlayer::Renderer的代码做的分析,持续时间比较长。我都怀疑自己具体写的对不对。
非常抱歉拖了这么久,文中代码比较多,如果诸位绝对不对胃口可以略过。
怎么说呢? Renderer涉及部分比较多,包括NuPlayer、AudioSink、MediaClock、VideoScheduler等。细节还是有待分析,不过基本整理情况是什么了。
我到现在才认识到理解和整理出来的差距。还需要多历练下。

posted @ 2016-12-23 15:33  Tocy  阅读(4095)  评论(0编辑  收藏  举报