Robberies
题意:一个强盗要去抢劫银行,对于每个银行来说,都有一个不被抓的概率p,和能抢劫到的钱数money,每个银行最多只可以被抢劫一次。问在不被抓的总概率P下,怎样得到最大价值的钱数。
分析:被抓概率可以转换成安全概率,Roy的安全概率大于1-P时都是安全的。抢劫的金额为0时,肯定是安全的,所以d[0]=1;其他金额初始为最危险的所以概率全为0;
注意:不要误以为精度只有两位。
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
SampleInput
3 0.04 3 1 0.02 2 0.03 3 0.05 0.06 3 2 0.03 2 0.03 3 0.05 0.10 3 1 0.03 2 0.02 3 0.05
SampleOutput
2 4 6
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #define MAXN 101 5 #define MAXV 10001 6 7 using namespace std; 8 9 int cost[MAXN]; 10 double weight[MAXV],d[MAXV]; 11 12 int main() 13 { 14 int test,sumv,n,i,j; 15 double P; 16 cin>>test; 17 while(test--) 18 { 19 scanf("%lf %d",&P,&n); 20 P=1-P; 21 sumv=0; 22 for(i=0;i<n;i++) 23 { 24 scanf("%d %lf",&cost[i],&weight[i]); 25 weight[i]=1-weight[i]; 26 sumv+=cost[i]; 27 } 28 for(i=0;i<=sumv;i++) 29 d[i]=0; 30 d[0]=1; 31 for(i=0;i<n;i++) 32 { 33 for(j=sumv;j>=cost[i];j--) 34 { 35 d[j]=max(d[j],d[j-cost[i]]*weight[i]); 36 } 37 } 38 bool flag=false; 39 for(i=sumv;i>=0;i--) 40 { 41 if(d[i]-P>0.000000001) 42 { 43 printf("%d\n",i); 44 break; 45 } 46 } 47 } 48 return 0; 49 }