SX学SX内容 笔记?
某帖子笔记1
集合论
集合就是一堆东西...满足
-
- 集合中的元素互异(即每种只有一个)
-
- 集合中的元素无序(不是一个数组,集合中的元素没有显然的排序法则)
-
- 集合是确定的(包括满足条件的所有东西,比如'一个集合包含有所有可能存在的集合'是不正确的)
组
组是一类数学对象.组是有序的、多元的.
组的表示方法:$(val1[,val_k]*)$
笛卡尔积
定义两个集合的笛卡尔积
映射
映射是一种从一个集合到另一个集合的对应关系,对于默认朴素集合论的情况属于基本概念.
(注意,以下定义自指涉,但是可以用来了解映射的性质.)
映射可以看成由一个集合组成的对象\(f=mapping(\mathtt{MmapstoQ})\),其中\(\mathtt{MmapstoQ}\subseteq M\times Q\)且
此时记\(f:M\rightarrow Q\),\(c=f(a)\).
(到这里结束)
二元运算
\(\oplus:S\times S\rightarrow S\)将\(\oplus\)称为\(S\)上的一个二元运算,\(a\oplus b=\oplus((a,b))\)
逻辑学
布尔型
布尔型就是真和假.真就是\(\mathtt{true}\),一般可以用\(1\)表示,假就是\(\mathtt{false}\),用\(0\)表示.
我们可以把布尔型归入一个集合即Boolean集合:$\mathtt{Boolean}=\{ \mathtt{true},\mathtt{false} \} $
命题
一个命题可以看作一个映射\(\mathtt{P}:U\rightarrow \mathtt{Boolean}\),其中\(U\)是命题所判断对象的全集.
以下定义一个记号\(U_{\mathtt{P}}\),其定义是\(U_{\mathtt{P}}=\\{x\mid x\in U,\mathtt{P}(x)=\mathtt{true}\\}\)
布尔运算
- a and b => \(a \wedge b\)
- bool and bool = false
- true and true = true
- \(U_{P(x)\wedge Q(x)}=U_{P(x)}\cap U_{Q(x)}\)
- a and b => \(a \vee b\)
- bool or bool = true
- false or false = false
- \(U_{P(x)\vee Q(x)}=U_{P(x)}\cup U_{Q(x)}\)
- a imp b => \(a \rightarrow b\)
- bool imp bool = true
- false imp true = false
- \(P(x)\rightarrow Q(x) \Rightarrow U_{P(x)}\subseteq U_{Q(x)}\)
- a equip b => \(a \leftrightarrow b\)
- a equip b = [ a == b ]
- \(P(x)\leftrightarrow Q(x) \Rightarrow U_{P(x)}= U_{Q(x)}\)
- not a => \(\neg a\)
- not a = [ 1 - a ] : a as Boolean
- \(U_{\neg P(x)}=U\setminus U_{P(x)}\)
条件
充分条件 \(A\Rightarrow B\),\(A\)是\(B\)的充分条件.
必要条件 \(\neg A\Rightarrow \neg B\),\(A\)是\(B\)的必要条件.
命题表示法 \(\mathtt{P}(x)= x \rightarrow P\) \(x\)为条件 \(P\)为结果
逆命题 \(inv(P(x))=P \rightarrow x\)
否命题 \(neg(P(x))=\neg x \rightarrow \neg P\)
逆否命题 \(invneg(P)=inv(neg(P))\)
自然数
皮亚诺公理化体系
自然数是一个戴德金-皮亚诺结构,戴德金-皮亚诺结构是一个满足以下几个性质的三元组\(\mathbb{Z}=(S,f,e)\):
- \(e\in S\)
- \(f:S\rightarrow S\)
- \((\forall b\in S)(\forall c\in S)((f(b)=f(c))\Leftrightarrow (b=c))\)
- \((\forall a\in S)(\neg (f(a)=e))\)
- \((\forall P\subseteq S)\left((e\in P)\wedge((\forall a\in P)(f(a)\in P))\Leftrightarrow (S=P)\right)\)
序数的冯·诺依曼定义
- 0 {}
- 1 {{{}}}
- 2 {{{}},{{{{}}}}}
- 3 {{{}},{{{{}}}},{{{{}},{{{{}}}}}}}
- 4 {{{}},{{{{}}}},{{{{}},{{{{}}}}}},{{{{}},{{{{}}}},{{{{}},{{{{}}}}}}}}}
- ...
- 然并卵
加法
定义加法为\(S\)上的二元运算\(+\)满足
- \((\forall a\in S)(a+e=a)\)
- \((\forall a,b\in S)(f(a)+b=f(a+b))\)
可以证明这种运算的唯一性.即假设有两种不同定义的二元运算满足以上条件为\(+\)和\(\oplus\),可以发现\((\forall a,b\in S)(a+b=a\oplus b)\).