解题报告:luogu P2401 不等数列
还是很菜,只能做绿题。
而且 whk 异常颓废,明天要给自己定任务了。。。
没带学读了
题目链接:P2401 不等数列
考虑 \(dp\) 。
如何继承呢?
我们来手玩一下吧,看 \(n=3\) 是的一种种 \(k=1\) 的情况:
\[3>1<2
\]
我们发现可以在四个位置插入 \(4\) 。
显然插到最前面不增加贡献,然而插到最后面一定产生贡献。
所以就不讨论了。
然后我们发现如果 \(4\) 插到 \(>\) 处就会成:\(<4>\)
显然产生一个贡献,然后看插到 \(<\) 处:\(<4>\)
没有贡献。
唉,怎么状态都一样啊一样啊
那么显然可以推出式子:
设 \(dp_{i,j}\) 为前 \(n\) 个数有 \(j\) 个 \(<\) 时的方案数,那么:
\[dp_{i,j}=(j+1)dp_{i-1,j}+(i-j)dp_{i-1,j-1}
\]
注意向两边放的情况,不要落下。
边界值很简单:
\[dp_{i,0}=1,dp_{i,{i-1}}=1
\]
当然还有特判一些无脑的点,比如 \(dp_{i,i}=0\)
\(Code\):
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define read(x) scanf("%d",&x)
#define MOD 2015
int dp[1005][1005];
int n,k;
int main()
{
read(n),read(k);
if(n==1){printf("0\n");return 0;}
if(n==k){printf("0\n");return 0;}
if(k==n-1){printf("1\n");return 0;}
for(int i=2;i<=n;i++) dp[i][0]=dp[i][i-1]=1;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=i-2;j++)
{
dp[i][j]=((j+1)*dp[i-1][j]%MOD+(i-j)*dp[i-1][j-1]%MOD)%MOD;
}
}
printf("%d\n",dp[n][k]%MOD);
return 0;
}