……

解题报告:luogu P1115(模板 最大子段和)

题目链接:P1115 最大子段和
告诉你,这个我调了一天的题是橙题......
线性容易得到,放篇题解:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n[200001],p,ans[200001]={0};
    int sum=-9999999;//|x|<=10000   QWQ
    cin>>p;
    for(int i=1;i<=p;i++)
    {
        cin>>n[i];//输入
        ans[i]=max(ans[i-1]+n[i],n[i]);//DP
        sum=max(sum,ans[i]);//取最大值也同时进行,节约时间
    }
    cout<<sum;//直接输出
    return 0;
}

可我想到一道紫题,这样做沦为\(O(n^2)\),那我们如何维护任意区间的最大子段和,可以用线段树维护,开始想了个\(O(n^2logn)\),显然是假的,然后学了下,又出了些\(SB\)错误,终于\(AC\)了。

\(Code\):

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int MAXN=200005;
int t[MAXN],n;
struct seg_t
{
	int l,r,sum,pre,suf,maxn;
	seg_t()
	{
		l=r=sum=pre=suf=maxn=0;
	}
}a[MAXN<<2];
void update(int k)
{
	a[k].pre=max(a[k<<1].pre,a[k<<1].sum+a[k<<1|1].pre);
	a[k].suf=max(a[k<<1|1].suf,a[k<<1|1].sum+a[k<<1].suf);
	a[k].maxn=max(max(a[k<<1].maxn,a[k<<1|1].maxn),a[k<<1].suf+a[k<<1|1].pre);
	a[k].sum=a[k<<1].sum+a[k<<1|1].sum;
}
void build(int k,int l,int r)
{
	a[k].l=l,a[k].r=r;
	if(l==r)
	{
		a[k].maxn=a[k].sum=a[k].suf=a[k].pre=t[l];
		return;
	}
	int mid=(l+r)>>1;
	build(k<<1,l,mid),build(k<<1|1,mid+1,r); 
	update(k);
}
seg_t query(int k,int l,int r)
{
	int mid=(a[k].l+a[k].r)>>1;
	if(a[k].l==l&&a[k].r==r) return a[k];
	if(r<=mid) return query(k<<1,l,r);
	else if(l>=mid+1) return query(k<<1|1,l,r);
	else
	{
		seg_t ll,rr,ans;
		ll=query(k<<1,l,mid),rr=query(k<<1|1,mid+1,r);
		ans.sum=ll.sum+rr.sum;
		ans.maxn=max(ll.maxn,rr.maxn);
		ans.pre=max(ll.pre,ll.sum+rr.pre);
		ans.suf=max(rr.suf,rr.sum+ll.suf);
		ans.maxn=max(ans.maxn,ll.suf+rr.pre);
		return ans;
	}
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&t[i]);
	build(1,1,n);
	printf("%d\n",query(1,1,n).maxn);
	return 0;
}

这种线段树咱真没见过

posted @ 2020-02-16 18:31  童话镇里的星河  阅读(133)  评论(0编辑  收藏  举报