python 迭代器和生成器详解
一、迭代器
说迭代器之前有两个相关的名词需要介绍:
可迭代对象:只要定义了__iter__()方法,我们就说该对象是可迭代对象,并且可迭代对象能提供迭代器。
迭代器:实现了__next__()或者next()(python2)方法的称为迭代器,迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁,因此只占用固定的内存。
迭代:当我们使用一个循环来遍历某个东西时,这个过程本身就叫迭代。迭代器迭代的元素只能往前不能后退。
1、为何用迭代器
下面用生成斐波那契数列为例子,说明为何用迭代器
#代码1 def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 #直接在函数fab(max)中用print打印会导致函数的可复用性变差,因为fab返回None。其他函数无法获得fab函数返回的数列。
#代码2 def fab(max): L = [] n, a, b = 0, 0, 1 while n < max: L.append(b) a, b = b, a + b n = n + 1 return L #代码2满足了可复用性的需求,但是占用了内存空间。
#代码3,定义并使用迭代器 class Fab(object): def __init__(self, max): self.max = max self.n, self.a, self.b = 0, 0, 1 def __iter__(self): return self def next(self): if self.n < self.max: r = self.b self.a, self.b = self.b, self.a + self.b self.n = self.n + 1 return r raise StopIteration() for key in Fabs(5): print key #Fabs 类通过 next() 不断返回数列的下一个数,内存占用始终为常数
2、如何使用迭代器
使用内建的工厂函数iter(iterable)可以获取迭代器对象(对象包含__iter__方法即可迭代,__iter__方法返回一个迭代器):
>>> lst = range(5) >>> it = iter(lst) >>> it <listiterator object at 0x0000000001E43390>
使用next()方法访问下一个元素
>>> it.next() 0 >>> it.next() 1 >>> it.next() 2
python处理迭代器越界是抛出StopIteration异常
>>> it.next() 3 >>> it.next <method-wrapper 'next' of listiterator object at 0x01A63110> >>> it.next() 4 >>> it.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
了解了StopIteration,可以使用迭代器进行遍历了:
lst = range(5) it = iter(lst) try: while True: val = it.next() print val except StopIteration: pass
3、for语法糖
幸运的是python提供的for语句语法糖为迭代提供了方便的使用方法。在for循环中,Python将自动调用工厂函数iter()获得迭代器,自动调用next()获取元素,还完成了检查StopIteration异常的工作。
>>> lst = range(5) >>> for i in lst: ... print i ... 0 1 2 3 4
二、生成器
带有 yield 的函数在 Python 中被称之为 generator(生成器),几个例子说明下(还是用生成斐波那契数列说明),可以看出代码3远没有代码1简洁,生成器(yield)既可以保持代码1的简洁性,又可以保持代码3的效果。
#代码4 def fab(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n+ 1 #执行 for n in fab(5): print n 1 1 2 3 5
生成器也是一种迭代器,简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
>>> f = fab(3) >>> f.next() 1 >>> f.next() 1 >>> f.next() 2 >>> f.next() Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
return作用
在一个生成器中,如果没有return,则默认执行到函数完毕;如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。例如
def read_file(fpath): BLOCK_SIZE = 1024 with open(fpath, 'rb') as f: while True: block = f.read(BLOCK_SIZE) if block: yield block else: return
如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取。