特殊二阶递推式的一个关于最大公因数的性质

定义

对于互质的\(a, b\),即\(gcd(a, b) = 1\),有以下递推式:

\[f_0 = 0, f_1 = 1, f_n = a \times f_{n - 1} + b \times f_{n - 2} (n \ge 2) \]

引理1:\(\gcd(a, b) = \gcd(b, a \bmod b)\)

证明略

引理2:若\(\gcd(b, c) = 1\),则\(\gcd(a \times c, b) = \gcd(a, b)\)

证明略

定理1:\(\gcd(f_n, f_{n + 1}) = 1\)

证明:

\(n \le 2\)时,结论显然成立

\(n > 2\)时,\(\gcd(f_n, f_{n + 1}) = \gcd(f_n, a \times f_n + b \times f_{n - 1}) = gcd(f_n, b \times f_{n - 1}) = \gcd(f_n, b)\)

\(g = \gcd(f_n, b)\),则有\(g|f_n, g|b\)

因为\(f_n = a \times f_{n - 1} + b \times f_{n - 2}, \gcd(a, b) = 1\),所以\(g|f_{n_1}\),则有\(g | \gcd(f_n, f_{n - 1})\)

由此可得\(\gcd(f_n, f_{n - 1}) = 1 \Longrightarrow \gcd(f_n, f_{n + 1}) = 1\)

数学归纳即可

定理2:\(f_n = f_{i + 1} \times f_{n - 1} + b \times f_{n - i - 1} \times f_{n - i - 1} (1 \le i < n)\)

数学归纳即可

定理3:\(\gcd(f_n, f_m) = f_{\gcd(n, m)}\)

证明:

不失一般性假设\(n \ge m\)

\(n = m\),结论显然成立

\(n = m + 1\),根据定理1,有\(\gcd(f_n, f_m) = 1\),且\(f_{\gcd(n, m)} = f_1 = 1\),结论成立

\(n > m + 1\),根据定理2,有\(f_n = f_{n - m} \times f_{m + 1} + b \times f_{n - m - 1} \times f_m\)

\(\gcd(f_n, f_m) = \gcd(f_{n - m} \times f_{m + 1} + b \times f_{n - m - 1} \times f_m, f_m) = \gcd(f_{n - m} \times f_{m + 1}, f_m) = \gcd(f_{n - m}, f_m)\)

即可得\(\gcd(f_n, f_m) = \gcd(f_m, f_{n \bmod m})\)

证毕

posted @ 2019-02-21 18:18  tkandi  阅读(328)  评论(0编辑  收藏  举报