RANSAC消除SIFT错配
摘要:
RANSAC为RANdom SAmple Consensus的缩写,它是根据一组包含异常数据的样本数据集,计算出数据的数学模型参数,得到有效样本数据的算法。它于1981年由 Fischler和Bolles最先提出[1]。RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(Outliers,偏离正常范 围很远、无法适应数学模型的数据),即数据集中含有噪声。这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产生的。同时RANSAC也假设, 给定一组正确的数据,存在可以计算出符合这些数据的模型参数的方法。RANSAC基本思想描述如下:①考虑 阅读全文
posted @ 2011-12-31 16:49 刘晓辉 阅读(11842) 评论(0) 推荐(1) 编辑