7.3(学号:3025)
import numpy as np
from scipy.interpolate import interp1d, interp2d, UnivariateSpline, griddata
import matplotlib.pyplot as plt
t0 = np.linspace(700, 780, 5)
v0 = np.array([0.0977, 0.1218, 0.1406, 0.1551, 0.1664])
f1 = interp1d(t0, v0)
f2 = interp1d(t0, v0, 'cubic')
tp = np.array([750, 770])
vp1 = f1(tp)
vp2 = f2(tp)
print("线性插值的预测结果为:", vp1)
print("三次样条插值的预测结果为:", vp2)
t = np.linspace(700, 780, 200)
v1 = f1(t)
v2 = f2(t)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t, v1, '--', label='线性插值')
ax.plot(t, v2, '-', label='三次样条插值', color='#ff9900')
ax.scatter(t0, v0, label='数据', zorder=10, marker='.', s=15, color='r')
ax.legend(fontsize=8)
fig.show()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通