摘要:
1、使用工具Studio 3T for MongoDB 选择一个数据库中的Collections集合,然后按住 Ctrl+C 复制快捷键会弹出如下帮助框。 点击 Ctrl+V 粘贴快捷键,重命名一下复制的名称即可。 2、使用工具Robo 3T 在Collection中,右键选择复制Collectio 阅读全文
摘要:
问题描述 对于一个大型网站,用户访问量尝尝高达数十亿。对于数十亿是一个什么样的概念,我们这里可以简单的计算一下。对于一个用户,单次访问,我们通常会记录下哪些数据呢? 1、用户的id 2、用户访问的时间 3、用户逗留的时间 4、用户执行的操作 5、用户的其余数据(比如IP等等) 我们单单从用户id来说 阅读全文
摘要:
Spark的intersection intersection顾名思义,他是指交叉的。当两个RDD进行intersection后,将保留两者共有的。因此对于RDD1.intersection(RDD2) 和RDD2.intersection(RDD1) 。应该是一致的。 比如对于,List1 = { 阅读全文
摘要:
spark的combineByKey combineByKey的特点 combineByKey的强大之处,在于提供了三个函数操作来操作一个函数。第一个函数,是对元数据处理,从而获得一个键值对。第二个函数,是对键值键值对进行一对一的操作,即一个键值对对应一个输出,且这里是根据key进行整合。第三个函数 阅读全文
摘要:
reduce和reduceByKey的区别 reduce和reduceByKey是spark中使用地非常频繁的,在字数统计中,可以看到reduceByKey的经典使用。那么reduce和reduceBykey的区别在哪呢?reduce处理数据时有着一对一的特性,而reduceByKey则有着多对一的 阅读全文
摘要:
spark的RDD操作 在上一节Spark经典的单词统计中,了解了几个RDD操作,包括flatMap,map,reduceByKey,以及后面简化的方案,countByValue。那么这一节将介绍更多常用的RDD操作,并且为每一种RDD我们分解来看其运作的情况。 spark的flatMap flat 阅读全文
摘要:
spark经典之单词统计 准备数据 既然要统计单词我们就需要一个包含一定数量的文本,我们这里选择了英文原著《GoneWithTheWind》(《飘》)的文本来做一个数据统计,看看文章中各个单词出现频次如何。为了便于大家下载文本。可以到GitHub上下载文本以及对应的代码。我将文本放在项目的目录下。 阅读全文