day34 协程

1.   前提

  之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。

  随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。

  为此我们需要先回顾下并发的本质:切换+保存状态

  cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长

   

  ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态

   一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。

  为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:


#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换 

 

import time

def func1():

    for i in range(11):
        #yield
        print('这是我第%s次打印啦' % i)
        time.sleep(1)


def func2():
    g = func1()
    #next(g)
    for k in range(10):

        print('哈哈,我第%s次打印了' % k)
        time.sleep(1)
        #next(g)

#不写yield,下面两个任务是执行完func1里面所有的程序才会执行func2里面的程序,有了yield,我们实现了两个任务的切换+保存状态
func1()
func2()

通过yield实现任务切换+保存现场
通过yield任务切换+保存状态
#基于yield并发执行,多任务之间来回切换,这就是个简单的协程的体现,但是他能够节省I/O时间吗?不能
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield
        # time.sleep(1) #发现什么?只是进行了切换,但是并没有节省I/O时间
        print('处理了数据:',x)
def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)  #找到了consumer函数的yield位置
    for i in range(3):
    # for i in range(10000000):
        g.send(i)  #给yield传值,然后再循环给下一个yield传值,并且多了切换的程序,比直接串行执行还多了一些步骤,导致执行效率反而更低了。
        print('发送了数据:',i)
start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer() #我在当前线程中只执行了这个函数,但是通过这个函数里面的send切换了另外一个任务
stop=time.time()

# 串行执行的方式
# res=producer()
# consumer(res) 
# stop=time.time()

print(stop-start)

单纯的切换反而会降低运行效率
单纯的切换反而会降低运行效率

 

 

二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

import time
def func1():
    while True:
        print('func1')
        yield

def func2():
    g=func1()
    for i in range(10000000):
        i+1
        next(g)
        time.sleep(3)
        print('func2')
start=time.time()
func2()
stop=time.time()
print(stop-start)

yield不能检测IO,实现遇到IO自动切换
yield不能检测IO,实现遇到IO自动切换

协程就是告诉Cpython解释器,你不是nb吗,不是搞了个GIL锁吗,那好,我就自己搞成一个线程让你去执行,省去你切换线程的时间,我自己切换比你切换要快很多,避免了很多的开销,对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

  协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。

#2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

二 协程介绍

  协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、

  需要强调的是:

#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

  对比操作系统控制线程的切换,用户在单线程内控制协程的切换

  优点如下:

#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu

  缺点如下:

#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

 总结协程特点:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

三 Greenlet

如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换

#真正的协程模块就是使用greenlet完成的切换
from greenlet import greenlet

def eat(name):
    print('%s eat 1' %name)  #2
    g2.switch('taibai')   #3
    print('%s eat 2' %name) #6
    g2.switch() #7
def play(name):
    print('%s play 1' %name) #4
    g1.switch()      #5
    print('%s play 2' %name) #8

g1=greenlet(eat)
g2=greenlet(play)

g1.switch('taibai')#可以在第一次switch时传入参数,以后都不需要  1

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i

def f2():
    res=1
    for i in range(100000000):
        res*=i

start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524

效率对比
效率对比

 greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

上面这个图,是协程真正的意义,虽然没有规避固有的I/O时间,但是我们使用这个时间来做别的事情了,一般在工作中我们都是进程+线程+协程的方式来实现并发,以达到最好的并发效果,如果是4核的cpu,一般起5个进程,每个进程中20个线程(5倍cpu数量),每个线程可以起500个协程,大规模爬取页面的时候,等待网络延迟的时间的时候,我们就可以用协程去实现并发。 并发数量 = 5 * 20 * 500 = 50000个并发,这是一般一个4cpu的机器最大的并发数。nginx在负载均衡的时候最大承载量就是5w个

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。

 

四 Gevent介绍

#安装
pip3 install gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
#用法
# g1=gevent.spawn(func,1,2,3,x=4,y=5)创建一个协程对象g1,
# spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,
# 可以是位置实参或关键字实参,都是传给函数eat的,spawn是异步提交任务
import gevent
import time
from gevent import monkey;monkey.patch_all()
def func1(n):
print("11111",n)
# time.sleep(2)
gevent.sleep(2)
print("22222",n)

def func2(m):
print("33333",m)
# time.sleep(2)
gevent.sleep(2)
print("44444",m)

startime=time.time()
g1=gevent.spawn(func1,"alex")
g2=gevent.spawn(func2,"wusir")

# g1.join() #等待g1结束上面只是创建协程对象,这边才开始执行
# g2.join() #等待g2结束 有人测试的时候会发现,不写第二个join也能执行g2,
# 是的,协程帮你切换执行了,但是你会发现,如果g2里面的任务执行的时间长,但是不写join的话,就不会执行完等到g2剩下的任务了

gevent.joinall([g1,g2]) #相当于上面的同时执行g1,g2
endtime=time.time()
print(endtime-startime)
print("代码结束")

遇到IO阻塞时会自动切换任务

import gevent
def eat(name):
    print('%s eat 1' %name)
    gevent.sleep(2)
    print('%s eat 2' %name)

def play(name):
    print('%s play 1' %name)
    gevent.sleep(1)
    print('%s play 2' %name)


g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('')

遇到I/O切换
遇到I/O切换

  上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,

  而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

  from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之类

  或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all() #必须写在最上面,这句话后面的所有阻塞全部能够识别了

import gevent  #直接导入即可
import time
def eat():
    #print()  
    print('eat food 1')
    time.sleep(2)  #加上mokey就能够识别到time模块的sleep了
    print('eat food 2')

def play():
    print('play 1')
    time.sleep(1)  #来回切换,直到一个I/O的时间结束,这里都是我们个gevent做得,不再是控制不了的操作系统了。
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print('')
View Code

 我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程,虚拟线程,其实都在一个线程里面

  进程线程的任务切换是由操作系统自行切换的,你自己不能控制

  协程是通过自己的程序(代码)来进行切换的,自己能够控制,只有遇到协程模块能够识别的IO操作的时候,程序才会进行任务切换,实现并发效果,如果所有程序都没有IO操作,那么就基本属于串行执行了。

五 Gevent之同步与异步





posted @ 2018-12-04 21:19  阿布_alone  阅读(187)  评论(0编辑  收藏  举报
TOP