Python NumPy 生成随机数的方法及示例

NumPy 是一个强大的库,用于数值计算,包括生成各种随机数。可以使用random.rand()、random.randn()、random.randint()、random.uniform()、random.normal()和random.seed()函数方法生成随机数。本文介绍生成随机数的方法,以及相关的示例代码。

1、numpy.random.rand()

numpy.random.rand(d0,d1,..dn) 用于生成指定形状的均匀分布的随机样本,样本值位于[0, 1)之间。

   使用示例:Python NumPy 生成随机数的方法及示例-CJavaPy

2、numpy.random.randn()

numpy.random.randn(d0,d1,..dn)用于生成指定形状的标准正态分布(均值为0,标准差为1)的随机样本。

  使用示例:Python NumPy 生成随机数的方法及示例-CJavaPy

3、numpy.random.randint()

numpy.random.randint(low,high,(shape))用于生成指定范围内的整数随机样本,可以指定最小值(包括)和最大值(不包括)。

   使用示例:Python NumPy 生成随机数的方法及示例-CJavaPy

4、numpy.random.uniform()

numpy.random.uniform(low,high,(size))用于生成指定范围内的均匀分布的随机样本。

   使用示例:Python NumPy 生成随机数的方法及示例-CJavaPy

5、numpy.random.normal()

numpy.random.normal() 用于生成指定均值和标准差的正态分布的随机样本。

   使用示例:Python NumPy 生成随机数的方法及示例-CJavaPy

6、numpy.random.seed()

numpy.random.seed() 用于设置随机数生成器的种子,以确保生成的随机数是可重现的。种子值可以是任意整数。

   使用示例:Python NumPy 生成随机数的方法及示例-CJavaPy

 

posted @ 2023-12-30 22:34  leviliang  阅读(53)  评论(0编辑  收藏  举报