hdu 6333

Problem Description
There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.
 

 

Input
The first line of the input contains an integer T (1T105) denoting the number of test cases.
Each test case consists of one line with two integers n,m (1mn105).
 

 

Output
For each test case, print an integer representing the number of ways modulo 109+7.
 

 

Sample Input
2 5 2 1000 500
 

 

Sample Output
16 924129523
 

 

Source
 

 

Recommend
chendu   |   We have carefully selected several similar problems for you:  6343 6342 6341 6340 6339 
 
 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdio>
 4 #include <vector>
 5 #include <cmath>
 6 #include <algorithm>
 7 using namespace std;
 8 #define N 100005//一开始是10005,超时
 9 #define mod 1000000007
10 #define gep(i,a,b) for(int i=a;i<=b;i++)
11 #define mem(a,b) memset(a,b,sizeof(a))
12 #define ll  long long 
13 ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
14 ll c(ll a,ll b)
15 {
16    if(b>a)  return 0;
17    return fac[a]*inv[b]%mod*inv[a-b]%mod;
18 }
19 void init()
20 {
21     gep(i,2,N-1){
22         fac[i]=fac[i-1]*i%mod;
23         f[i]=(mod-mod/i)*f[mod%i]%mod;
24         inv[i]=inv[i-1]*f[i]%mod;
25     }
26 }
27 struct Ma{
28     ll n,m;
29     int id;
30     bool operator <(const Ma&a)const{
31         return n<a.n;//排序
32     }
33 }ma[N];
34 vector<Ma>ve[N];
35 ll ans[N];
36 int t;
37 int main()
38 {
39   init();  
40   scanf("%d",&t);
41   ll mx=sqrt(100000);
42   gep(i,1,t){
43      scanf("%lld%lld",&ma[i].n,&ma[i].m);
44      ll x=ma[i].m/mx;
45       ma[i].id=i;
46      ve[x].push_back(ma[i]);//分块
47   } 
48   gep(i,0,mx){
49       if(!ve[i].size())  continue;
50       sort(ve[i].begin(),ve[i].end());//排序
51       int k=ve[i].size();
52       ll val=0,ik=-1,mn=ve[i][0].n;//一次处理每组数据
53       /*
54       s(n,m):c(n,0)+c(n,1)+……c(n,m)
55       s(n,m)=2*s(n-1,m)-c(n-1,m)
56       */
57       gep(j,0,k-1){
58           while(mn<ve[i][j].n) val=(2ll*val+mod-c(mn++,ik))%mod;//+mod
59           while(ik<ve[i][j].m) val=(val+c(mn,++ik))%mod;//,++ik,不是ik++,可以不加mod
60           while(ik>ve[i][j].m) val=(val+mod-c(mn,ik--))%mod;//+mod
61           ans[ve[i][j].id]=val;
62       }  
63   }
64   gep(i,1,t){
65        printf("%lld\n",ans[i]);
66       }      
67   return 0;
68 }

 

posted on 2018-08-02 23:38  cltt  阅读(355)  评论(0编辑  收藏  举报

导航