nn.Conv2d卷积
二维卷积可以处理二维数据
- nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))
参数:
in_channel: 输入数据的通道数,例RGB图片通道数为3;
out_channel: 输出数据的通道数,这个根据模型调整;
kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小(2,2), kennel_size=(2,3),意味着卷积大小(2,3)即非正方形卷积
stride:步长,默认为1,与kennel_size类似,stride=2,意味着步长上下左右扫描皆为2, stride=(2,3),左右扫描步长为2,上下为3;
padding: 零填充 - 例子
输入数据X[10,16,30,32],其分别代表:10组数据,通道数为16,高度为30,宽为32 -
import torch import torch.nn as nn x = torch.randn(10, 16, 30, 32) # batch, channel , height , width print(x.shape) m = nn.Conv2d(16, 33, (3, 2), (2,1)) # in_channel, out_channel ,kennel_size,stride print(m) y = m(x) print(y.shape)
torch.Size([10, 16, 30, 32]) Conv2d(16, 33, kernel_size=(3, 2), stride=(2, 1)) torch.Size([10, 33, 14, 31])
h = floor((h - kennel_size + 2*padding) / stride )+ 1,w同理
x = ([10,16,30,32]),其中h=30,w=32,对于卷积核长分别是 h:3,w:2 ;对于步长分别是h:2,w:1;padding默认0;
h = (30 - 3 + 2*0)/ 2 +1 = 27/2 +1 = 13+1 =14
w =(32 - 2 + 2*0)/ 1 +1 = 30/1 +1 = 30+1 =31
batch = 10, out_channel = 33
故: y= ([10, 33, 14, 31])
分类:
pytorch
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
2019-08-22 输出细节
2018-08-22 基本大数问题