深度学习基础--Bottleneck(瓶颈) Architectures
ResNet的核心内容之一,即“Deeper Bottleneck Architectures”(简称DBA),一言概之,bottleneck是一种特殊的残差结构。
Resnet论文里的原图如上(即Bottleneck V1 ),左图是普通的残差结构,右图是瓶颈结构。具体而言,block的输入和输出channel_num是一样的(上右图中是256,左图为64),
而在block结构中的channel_num(上右图中是64)是小于输入/输出channel_num(256),很形象。也就是先降维再升维
作用
换成bottleneck design以后,网络的参数减少了很多,深度也加深了,训练也就相对容易一些。
转载自:https://blog.csdn.net/wydbyxr/article/details/83988891
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现