tf.train.AdamOptimizer()函数解析

tf.train.AdamOptimizer()函数是Adam优化算法:是一个寻找全局最优点的优化算法,引入了二次方梯度校正。

tf.train.AdamOptimizer.__init__(
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam'
)

参数:

learning_rate:张量或浮点值。学习速率
beta1:一个浮点值或一个常量浮点张量。一阶矩估计的指数衰减率
beta2:一个浮点值或一个常量浮点张量。二阶矩估计的指数衰减率
epsilon:数值稳定性的一个小常数
use_locking:如果True,要使用lock进行更新操作
`name``:应用梯度时为了创建操作的可选名称。默认为“Adam”
本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。

Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。

相比于基础SGD算法,1.不容易陷于局部优点。2.速度更快

 

posted on   cltt  阅读(5120)  评论(0编辑  收藏  举报

编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示