PyTorch中的padding(边缘填充)操作

我们知道,在对图像执行卷积操作时,如果不对图像边缘进行填充,卷积核将无法到达图像边缘的像素(3*3取卷积4*4,则边缘无法到达),而且卷积前后图像的尺寸也会发生变化,这会造成许多麻烦。

因此现在各大深度学习框架的卷积层实现上基本都配备了padding操作,以保证图像输入输出前后的尺寸大小不变。例如,若卷积核大小为3x3,那么就应该设定padding=1,即填充1层边缘像素;若卷积核大小为7x7,那么就应该设定padding=3,填充3层边缘像素;也就是padding大小一般设定为核大小的一半。在pytorch的卷积层定义中,默认的padding为零填充。

self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=7, padding=3)

padding的种类及其pytorch定义

padding,即边缘填充,可以分为四类:零填充,常数填充,镜像填充,重复填充。

 

复制代码
1.零填充

对图像或者张量的边缘进行补零填充操作:

class ZeroPad2d(ConstantPad2d):
    # Pads the input tensor boundaries with zero.
    def __init__(self, padding):
        super(ZeroPad2d, self).__init__(padding, 0)
2.常数填充

定义一个常数来对图像或者张量的边缘进行填充,若该常数等于0则等价于零填充。

class ConstantPad2d(_ConstantPadNd):
    # Pads the input tensor boundaries with a constant value.
    def __init__(self, padding, value):
        super(ConstantPad2d, self).__init__(value)
        self.padding = _quadruple(padding)
3.镜像填充

对图像或者张量的边缘进行镜像对称的填充,示例如下:

>>> m = nn.ReflectionPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
  0  1  2
  3  4  5
  6  7  8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
   8   7   6   7   8   7   6
   5   4   3   4   5   4   3
   2   1   0   1   2   1   0
   5   4   3   4   5   4   3
   8   7   6   7   8   7   6
   5   4   3   4   5   4   3
   2   1   0   1   2   1   0
class ReflectionPad2d(_ReflectionPadNd):
    # Pads the input tensor using the reflection of the input boundary.
 
    def __init__(self, padding):
        super(ReflectionPad2d, self).__init__()
        self.padding = _quadruple(padding)
4.重复填充

对图像或者张量的边缘进行重复填充,就是说直接用边缘的像素值来填充。示例如下:

>>> m = nn.ReplicationPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
    0  1  2
    3  4  5
    6  7  8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
    0   0   0   1   2   2   2
    0   0   0   1   2   2   2
    0   0   0   1   2   2   2
    3   3   3   4   5   5   5
    6   6   6   7   8   8   8
    6   6   6   7   8   8   8
    6   6   6   7   8   8   8
[torch.FloatTensor of size (1,1,7,7)]
class ReplicationPad2d(_ReplicationPadNd):
    # Pads the input tensor using replication of the input boundary.
 
    def __init__(self, padding):
        super(ReplicationPad2d, self).__init__()
        self.padding = _quadruple(padding)
复制代码

 填充公式

 

 

 

padding='SAME'和'VALID'的区别

 

 

 

 

“VALID”只会删除最右边的列(或最下面的行)。
“SAME”试图均匀地左右填充,但是如果要添加的列的数量是奇数,它会将额外的列添加到右侧,就像本例中的情况一样(相同的逻辑垂直应用:底部可能有额外的一行零)。

实际应用

在许多计算机视觉任务中,例如图像分类,zero padding已经能够满足要求。但是不结合实际地乱用也是不行的。比方说,在图像增强/图像生成领域,zero padding可能会导致边缘出现伪影,如下所示:

 

 

 

这时候,可以改用镜像填充来代替零填充操作。我们定义一个新的padding层,然后把卷积层里的padding参数置为0.

具体写法如下:

class DEMO(nn.Module):

def __init__(self):
super(DEMO, self).__init__()
self.pad = nn.ReflectionPad2d(1)
self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=0)

def forward(self, x):
x = self.pad(x)
x = self.conv(x)
return F.relu(x)

以低光照增强任务为例,最终对比效果如下图。零填充会产生边缘伪影,而镜像填充很好地缓解了这一效应。

 

posted on   cltt  阅读(4720)  评论(0编辑  收藏  举报

编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
历史上的今天:
2019-03-16 数论小常识
2019-03-16 解决Uva网站打开慢的问题
2019-03-16 牛客练习赛42 A 字符串
2019-03-16 江西理工大学编程俱乐部 2328 Star
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示