PyTorch中的padding(边缘填充)操作
我们知道,在对图像执行卷积操作时,如果不对图像边缘进行填充,卷积核将无法到达图像边缘的像素(3*3取卷积4*4,则边缘无法到达),而且卷积前后图像的尺寸也会发生变化,这会造成许多麻烦。
因此现在各大深度学习框架的卷积层实现上基本都配备了padding操作,以保证图像输入输出前后的尺寸大小不变。例如,若卷积核大小为3x3,那么就应该设定padding=1,即填充1层边缘像素;若卷积核大小为7x7,那么就应该设定padding=3,填充3层边缘像素;也就是padding大小一般设定为核大小的一半。在pytorch的卷积层定义中,默认的padding为零填充。
self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=7, padding=3)
padding的种类及其pytorch定义
padding,即边缘填充,可以分为四类:零填充,常数填充,镜像填充,重复填充。
1.零填充 对图像或者张量的边缘进行补零填充操作: class ZeroPad2d(ConstantPad2d): # Pads the input tensor boundaries with zero. def __init__(self, padding): super(ZeroPad2d, self).__init__(padding, 0) 2.常数填充 定义一个常数来对图像或者张量的边缘进行填充,若该常数等于0则等价于零填充。 class ConstantPad2d(_ConstantPadNd): # Pads the input tensor boundaries with a constant value. def __init__(self, padding, value): super(ConstantPad2d, self).__init__(value) self.padding = _quadruple(padding) 3.镜像填充 对图像或者张量的边缘进行镜像对称的填充,示例如下: >>> m = nn.ReflectionPad2d(2) >>> input = torch.arange(9).reshape(1, 1, 3, 3) >>> input (0 ,0 ,.,.) = 0 1 2 3 4 5 6 7 8 [torch.FloatTensor of size (1,1,3,3)] >>> m(input) (0 ,0 ,.,.) = 8 7 6 7 8 7 6 5 4 3 4 5 4 3 2 1 0 1 2 1 0 5 4 3 4 5 4 3 8 7 6 7 8 7 6 5 4 3 4 5 4 3 2 1 0 1 2 1 0 class ReflectionPad2d(_ReflectionPadNd): # Pads the input tensor using the reflection of the input boundary. def __init__(self, padding): super(ReflectionPad2d, self).__init__() self.padding = _quadruple(padding) 4.重复填充 对图像或者张量的边缘进行重复填充,就是说直接用边缘的像素值来填充。示例如下: >>> m = nn.ReplicationPad2d(2) >>> input = torch.arange(9).reshape(1, 1, 3, 3) >>> input (0 ,0 ,.,.) = 0 1 2 3 4 5 6 7 8 [torch.FloatTensor of size (1,1,3,3)] >>> m(input) (0 ,0 ,.,.) = 0 0 0 1 2 2 2 0 0 0 1 2 2 2 0 0 0 1 2 2 2 3 3 3 4 5 5 5 6 6 6 7 8 8 8 6 6 6 7 8 8 8 6 6 6 7 8 8 8 [torch.FloatTensor of size (1,1,7,7)] class ReplicationPad2d(_ReplicationPadNd): # Pads the input tensor using replication of the input boundary. def __init__(self, padding): super(ReplicationPad2d, self).__init__() self.padding = _quadruple(padding)
填充公式
padding='SAME'和'VALID'的区别
“VALID”只会删除最右边的列(或最下面的行)。
“SAME”试图均匀地左右填充,但是如果要添加的列的数量是奇数,它会将额外的列添加到右侧,就像本例中的情况一样(相同的逻辑垂直应用:底部可能有额外的一行零)。
实际应用
在许多计算机视觉任务中,例如图像分类,zero padding已经能够满足要求。但是不结合实际地乱用也是不行的。比方说,在图像增强/图像生成领域,zero padding可能会导致边缘出现伪影,如下所示:
这时候,可以改用镜像填充来代替零填充操作。我们定义一个新的padding层,然后把卷积层里的padding参数置为0.
具体写法如下:
class DEMO(nn.Module):
def __init__(self):
super(DEMO, self).__init__()
self.pad = nn.ReflectionPad2d(1)
self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=0)
def forward(self, x):
x = self.pad(x)
x = self.conv(x)
return F.relu(x)
以低光照增强任务为例,最终对比效果如下图。零填充会产生边缘伪影,而镜像填充很好地缓解了这一效应。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
2019-03-16 数论小常识
2019-03-16 解决Uva网站打开慢的问题
2019-03-16 牛客练习赛42 A 字符串
2019-03-16 江西理工大学编程俱乐部 2328 Star