监督学习和无监督学习
机器学习:定义一、给予计算机能自我学习的能力而不是编程。定义二、对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习
监督学习
在有监督的学习中,我们得到了一个数据集,并且已经知道正确的输出应该是什么样的,我们认为输入和输出之间是有关系的。
监督学习问题分为回归问题和分类问题。在回归问题中,我们试图在连续输出中预测结果,这意味着我们试图将输入变量映射到某个连续函数。在分类问题中,我们试图预测离散输出的结果。换句话说,我们试图将输入变量映射到离散的类别中。
无监督学习
无监督学习使我们能够在不知道结果应该是什么的情况下处理问题。我们可以从不一定知道变量影响的数据中导出结构。
我们可以根据数据中变量之间的关系对数据进行聚类,从而得出这种结构。
对于无监督学习,没有基于预测结果的反馈。
例子:
聚类:收集1000000个不同的基因,并找到一种方法自动将这些基因分组,这些分组以某种方式相似或由不同变量相关,如寿命、位置、角色等。
非聚类:鸡尾酒会算法,允许你在混乱的环境中找到结构。(即在鸡尾酒会上从许多声音中识别出个人的声音和音乐)。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
2018-12-04 外键、主键
2018-12-04 四则运算
2018-12-04 计数原理