卷积神经网络

 

 

一个卷积核是3维的(Ci*k*k),一个卷积层是4维的  
Ci :输入通道数 ,padding :左右两边补零的数量
stride :步长,滑窗隔几个滑一下   。padding 和K 要匹配使用

 

 

 

没有提取任何的空间信息,只是简单的缩放

 

 

 

 

2(Ci/2*K*K/Co/2) 正常卷积的1/2。一般显卡不够用的时候要分组卷积

 

 

一般会和pointwise 卷积一起使用

 

 

卷积核之间打洞
c图的dilation(扩大) =3(2个卷积和之间隔着3个)

 

 

正常卷积把尺寸变小,而反卷积把尺寸变大

 

 

 

 

 

 

 

 

 

 

 

VGG从深度考虑,而GoogLeNet从宽度考虑
浅黄色1*1Conv 为了把输入通道数目降低,从而降低卷积层大小,降低网络参数量

 

 

v3 的感受野并没有变化

 

 

 

 

 

 

 

 

 

 

 

一般网络越深性能越好,但深到一定程度性能开始变差
因为太深网络无法训练
ResNet设计的初衷:训练很深的网络

 

 

 

 

DenseNet :网络小,性能强,但耗时

 

 

SENet :Pooling 后得到一个C维的向量(代表每个通道数的得分)给channel 打分,区分哪些channel是重要的,attention 是网络自动学习得到的。

 

 

 

 

 

 

posted on 2019-11-20 17:00  cltt  阅读(252)  评论(0编辑  收藏  举报

导航