决策树模型

   看到一篇关于决策树比较好的文章,转录过来,内容如下:

决策树

决策树里面最重要的就是节点和分裂条件,直接决定了一棵树的好坏。用一个简单的例子先说明一下:
来一段情景对话:
母亲:女儿,你也不小了,还没对象!妈很揪心啊,这不托人给你找了个对象,明儿去见个面吧!
女儿:年纪多大了?
母亲:25
女儿:长的帅不帅?
母亲:挺帅的!
女儿:收入高不高?有没有上进心?
母亲:收入还行,蛮有上进心!
   \vdots
就这样女儿建立了一棵决策树:

 
 

这种简单的决策树,处处可见。女儿一步步选择重要特征(年龄、长相、收入等)并构建特征分割方式(年纪大小、长相帅不帅、收入高不高),让自己进行最优的决策。

 

  • 决策树的构建过程
    很显然,由上面的例子可以看到构建一个决策树需要如下步骤:
    1、收集样本
    没有要决策的对象,一切都是扯淡。就是例子中母亲托人找对象的过程。
    2、选择特征-----构建节点
    根据特征的重要度,来构建子节点,越重要的特征越靠近根节点。也就是女儿觉得那些条件最重要,当最重要的条件不满足,就没必要继续了。
    3、特征的分裂方式-----分裂节点
    根据特征的分裂方式,来划分数据集,也就是根据条件区别对待。就是年纪太大的压根就不予考虑,年龄合适的才进一步考察。
    其实在实际构建树模型的时候,2和3是通过遍历的方式同时进行的。

上面的例子是主观的分裂节点,那么如何科学的构建节点分裂呢?下面来说明:
我们觉得什么样才算好,通俗来说就是通过越少的分裂,达到更好的区分度。用术语说就是当选择了这个条件之后,系统的不确定度下降最多。这个特征就是我们要重视的feature!在这里就不得不引入信息论中的一些知识了,主要是信息熵和不纯度,详情请参考我在语雀中总结的一一篇文档
主要是通过以下几种算法来实现最优分裂的效果:

ID3算法

系统的信息熵是H(c),分别计算每个特征的条件熵H(c|x),然后得到每个条件的信息增益IG(x) = H(c) -H(c|x)。通过判断每个特征的IG(x)的大小来决定特征的重要度。所以ID3算法是基于信息增益,信息增益大,则越适合用来分类。在具体的特征分裂的时候,每个条件的分裂是遍历了所有的可能(离散值有多少个就有多少个可能),这是一种贪心算法。所以这个算法不支持连续特征,也是缺点之一。

C4.5算法

与ID3算法的思路基本相同,只是解决了ID3算法中的一些缺点,比如将连续值离散化从而支持连续型特征,采用信息增益比Gr(x) = IG(x)/H(x)来代替ID3算法的信息增益,解决了信息增益偏向分支过多的特征。也补充了剪枝和补全缺失值的操作。

CART算法

简单来说,CART算法是不断的生成二叉树,能分类也能回归,因此也叫分类回归树。在生成分类树时,采用的是基尼系数Gini(c),也叫不纯度。生成回归树则采用的是节点样本的方差Var(x)来做分裂标准。这些过程,3种算法都差不多,有区别的是CART算法如何生成二叉树?
CART对连续型属性的处理与C4.5差不多,也是先离散化。而对于离散型属性,理论上有多少个离散值就应该分裂成多少个节点。但CART是一棵二叉树,每一次分裂只会产生两个节点,怎么办呢?很简单,只要将其中一个离散值独立作为一个节点,其他的离散值生成另外一个节点即可。这种分裂方案有多少个离散值就有多少种划分的方法,举一个简单的例子:如果某离散属性一个有三个离散值x,y,z,则该属性的分裂方法有【x、(y,z)】,【y、(z,x)】,【z,(x,y)】,分别计算每种划分方法的基尼值或者样本方差确定最优的方法。原则就是通过一个条件将样本空间一分为二。

决策树的评价

分类树:
假定某个样本空间有k类,对于生成好的一棵决策树的某叶子结点,假定该叶结点含有样本数目为m,可以分别统计该叶子节点下每个分类的频数m_i (i \in k)。每个类别的概率p_i = m_i/m,于是这个叶子节点的信息熵就是H(t) = -p_ilog(p_i)。信息熵越小,系统的区分度越明显。所以最终对于一棵分类树的评价可以用下面的公式来评判(w_t叶子节点的权重,可以更具样本数目来决定):loss = \sum_{t\in{leaf}} w_t \cdot H(t)对于不同的算法,并不完全都是用信息熵,也可以采用基尼系数来代替信息熵。
回归树:
假定某个样本空间,对于生成好的一棵决策树的某叶子结点,假定该叶结点含有样本数目为m,计算这个叶子节点的方差Var(t) = \sum_{i=1}^m (x_i-\hat x)^2。所以最终对于一棵回归树的评价可以用下面的公式来评判(w_t叶子节点的权重,可以更具样本数目来决定):loss = \sum_{t\in{leaf}} w_t \cdot Var(t)

决策树的剪枝

决策树对训练属于有很好的分类能力,但是对于未知的测试集未必有好的分类能力,泛化能力弱,即可能发生过拟合现象。为防止过拟合,我们需要进行剪枝。三种决策树的剪枝过程算法相同,区别是对于当前树的评价标准不同。
剪枝分为预剪枝和后剪枝:
预剪枝:
在树还没有完全分裂完成的时候,设定阈值,停止分裂,比如:
(1)每一个结点所包含的最小样本数目,例如10,则该结点总样本数小于10时,则不再分;
(2)指定树的高度或者深度,例如树的最大深度为6;
(3)指定结点的熵小于某个值,不再划分。
后剪枝:
在树已经完全分裂之后,进行剪枝:
由完全树T_0开始,剪枝部分结点(叶子节点,或者子节点)得到T_1,再次剪枝部分结点得到T_2...,直到剩下树根的树(就是根节点)T_k;在验证数据集上对这k个树分别评价,选择损失函数最小的树T_a

C4.5采用悲观剪枝方法(PEP)
悲观剪枝认为如果决策树的精度在剪枝前后没有影响的话,则进行剪枝。怎样才算是没有影响?如果剪枝后的误差小于剪枝前经度的上限,则说明剪枝后的效果更佳,此时需要子树进行剪枝操作。
CART采用代价复杂度剪枝方法(CCP)
代价复杂度选择节点表面误差率增益值最小的非叶子节点,删除该非叶子节点的左右子节点,若有多个非叶子节点的表面误差率增益值相同小,则选择非叶子节点中子节点数最多的非叶子节点进行剪枝。

  1. 决策好的一棵树,除去叶子节点后有\{ T_0,T_1,T_2,T_3,...,T_{k-1},T_k\}
  2. 计算每个子节点剪枝后的表面误差率增益\{ \alpha_0,\alpha_1,\alpha_2,\alpha_3,...,\alpha_{k-1},\alpha_k\}
    \alpha = \frac{loss(t)-loss(T)}{leaf(T)-1}
    loss(t) 剪枝后的损失函数
    loss(T) 剪枝前的损失函数
    leaf(T)剪枝前T节点下面的叶子节点数
  3. T_i = Min(\{ \alpha_0,\alpha_1,\alpha_2,\alpha_3,...,\alpha_{k-1},\alpha_k\}),剪枝最小的子节点T_i

随机森林----一片决策树森林

这个可以当作是决策树解决过拟合的一种方式。随机的采用样本的某些特征构建多棵简单的决策树,然后预测结果是这么多棵决策树预测结果的综合。用于分类就多数表决,用于回归就是取平均值。不想多说。
决策树单独作为一个算法的效果不是特别好,更多的是在集成算法种充当内核。比如xgboost、adboost之类的。

code

基于sklearn.tree模块
分类树:

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier

# 使用自带的iris数据
iris = datasets.load_iris()
X = iris.data[:, [0, 2]]
y = iris.target

# 创建模型

'''
    常用参数说明:
    criterion="gini"    ----    'entropy'-->信息熵,'gini'-->基尼系数
    splitter="best"     ----    'best'-->全局最优分裂,'random'-->随机选择局部最优点
    max_depth=None      ----    设定树深度
    min_samples_split=2 ----    内部节点停止分裂的最小样本数
    min_samples_leaf=1  ----    叶子节点的最小样本数,如果实际值小于它,则会和兄弟节点一起被剪枝
    max_features=None,  ----    分裂的时候要考虑的样本特征比例
    max_leaf_nodes=None,----    最大叶子节点数
'''
clf = DecisionTreeClassifier(max_depth=4)

# 训练模型
clf.fit(X, y)

回归树:

from sklearn.datasets.california_housing import fetch_california_housing
from sklearn.tree import DecisionTreeRegressor

# 使用波士顿房价数据
housing = fetch_california_housing()
X = housing.data[:, [6, 7]]
y = housing.target

'''
criterion="mse" ----    和分类树一样,评价指标,'mse'是均方误差,'mae'是绝对值误差
'''
# 创建模型
dtr = tree.DecisionTreeRegressor(max_depth = 2)

# 训练模型
dtr.fit(x, y)

随机森林:

from sklearn.ensemble import RandomForestClassifier
from sklearn import datasets

# 使用自带的iris数据
iris = datasets.load_iris()
X = iris.data
y = iris.target

'''
树的基本参数设定和分类树差不多
n_estimators=10,    ----    建立多少棵树
bootstrap=True,     ----    是统计学中的一种重采样技术,可以简单理解成是有放回地抽样
oob_score=False,    ----    是否使用带外样本进行模型验证
n_jobs=1,           ----    并行job个数,1:CPU有多少core,就启动多少job
warm_start=False,   ----    热启动,决定是否使用上次调用该类的结果然后增加新的。
'''
rftcl = RandomForestClassifier()

rftcl.fit(x,y)

原文链接:
作者:Zimix
链接:https://www.jianshu.com/p/d7820021efe2
posted @ 2019-12-10 18:46  另一个起点  阅读(5795)  评论(0编辑  收藏  举报