逻辑回归以及Python代码实现
这个逻辑回归使用sigmoid函数,关于逻辑回归以及sigmoid函数的推导这位博主讲的很清楚了:
https://www.cnblogs.com/hum0ro/p/9652674.html
下面给出具体代码。
数据集可以去我的下载那里下载。https://download.csdn.net/download/qq_41938259/12129611
import os
import pandas as pd
from sklearn import linear_model
import matplotlib.pyplot as plt
import numpy as np
def sigmoid(x):
return 1.0/(1.0 + np.exp(-x))
def gradAscent(data, label):
dataMatrix = data.to_numpy()
labelMat = label.to_numpy()
m, n = dataMatrix.shape
alpha = 0.001
weights = np.ones((n, 1))
for cycle in range(500):
vector = sigmoid(dataMatrix.dot(weights))
error = labelMat - vector
weights = weights + alpha * (dataMatrix.T).dot(error)
return weights
def train_OLS(x, y):
model = linear_model.LinearRegression()
model.fit(x, y)
t0, t1 = model.intercept_[0], model.coef_[0][0]
print('打印b', t0)
print('打印a', t1)
re = model.predict(x)
return re
def visualize_model(x1, y1, x2, y2):
fig = plt.figure(figsize=(6, 6), dpi=80)
ax = fig.add_subplot(111)
ax.set_xlabel("$distance$")
ax.set_xticks(range(0, 3000, 500))
ax.set_ylabel("$money$")
ax.set_yticks(range(0, 4000, 100))
ax.scatter(x1, y1, color="b", alpha=0.4)
ax.scatter(x2, y2, color="r", alpha=0.4)
plt.legend(shadow=True)
plt.show()
if __name__ == '__main__':
# 打开文件操作
os.chdir('D:\\')
data = pd.read_excel('附件1.xlsx', sep=',')
# print(data)
result = data['III']
distance = data['II']
money = data['VI']
X = data['IV']
Y = data['X']
mistake = data['V']
# print(X)
# print(Y)
test1 = pd.DataFrame({'result': result, 'distance': distance, 'money': money, 'mistake': mistake})
test1 = test1[(test1.mistake == 0)]
faster = test1[(test1.result == 1)]
lower = test1[test1.result == 0]
faster = pd.DataFrame({'distance': faster['distance'], 'money': faster['money']})
# print(faster)
# print(faster.shape[0])
lower = pd.DataFrame({'distance': lower['distance'], 'money': lower['money']})
# 丢弃有误数据
lower = lower.drop(index=129)
# print(lower)
# print(lower.shape[0])
visualize_model(faster['distance'], faster['money'], lower['distance'], lower['money'])
m, n = test1.shape
datas = pd.DataFrame({'X0': np.array([1]*m), 'X1': test1['distance'], 'X2': test1['money']})
# print(datas)
labels = pd.DataFrame({'label': test1['result']})
# print(labels)
print(gradAscent(datas, labels))
这是输出结果:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律