yyyyyyyyyyyyyyyyyyyy

博客园 首页 新随笔 联系 订阅 管理
 

笔记︱支持向量机SVM在金融风险欺诈中应用简述

欺诈一般不用什么深入的模型进行拟合,比较看重分析员对业务的了解,从异常值就可以观测出欺诈行为轨迹。同时欺诈较多看重分类模型的召回与准确率两个指标。较多使用SVM来进行建模。

召回率,准确率,排序很准的模型排行:

1、SVM

2、随机森林、决策树

其中SVM可以像逻辑回归做概率,但是这个概率是点到超平面之间的距离与最长距离之比。概率原理不是特别直接有效,而且解释力度不强。

——笔记︱金融风险之欺诈分类以及银行防控体系简述

一、SVM线性可分与不可分

1、线性可分与不可分

 

 

线性可分指的就是直线(如左图),用了一条直线来进行划分,实心圆与空心圆,用直线来分类;不可分就是曲线分类,准确性比较高。大部分情况都是线性不可分

 

2、不可分情况

 

 

不可分的情况有两种处理方式:

(1)容错的话,直接用线性,设置容错个数,错了就错了

(2)不容错,做惩罚函数,做多项式转化,变为线性的问题

如果惩罚过多,会造成过拟合的问题,泛化能力不足

 


二、核函数

 

SVM的核函数与神经网络的激活函数一致,不同的场景会用到不同的核函数。

其中RBF函数(高斯核函数),较多应用在异常值处理。

posted on 2017-02-19 16:15  xxxxxxxx1x2xxxxxxx  阅读(395)  评论(0编辑  收藏  举报