<数据结构>XDOJ323.判断有向图中是否有环
问题与解答
问题描述
判断有向图中是否有环。
输入格式
输入数据第一行是一个正整数,表示n个有向图,其余数据分成n组,每组第一个为一个整数,表示图中的顶点个数n,顶点数不超过100,之后为有向图的邻接矩阵。
输出格式
输出结果为一行,如果有环,则输出1,如果无环,则输出0。按顺序输出这n个有向图的判断结果,前后结果的输出不加空格。
样例输入
3
2
0 1
0 0
4
0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0
3
0 1 1
0 0 0
0 0 0
样例输出
010
//判断有向图中是否有环
//本质:拓扑排序
#include<stdio.h>
#include<queue>
#include<algorithm>
using namespace std;
#define MaxN 100 //最大顶点数
int n; //顶点数
int G[MaxN][MaxN]; //邻接矩阵保存图
int InDegree[MaxN] = {0}; //保存顶点入度
void TopoSort(); //拓扑排序判断有向环
int main(){
int num, i, j, flag;
scanf("%d", &num);
while(num--){ //多点输入:执行num次
scanf("%d", &n);
fill(InDegree,InDegree+MaxN,0); //每次都要重置InDegree数组!
for(i = 0; i < n; i++){ //输入图的邻接矩阵
for(j = 0; j < n; j++){
scanf("%d", &flag);
G[i][j] = flag;
if(flag != 0)
InDegree[j]++;
}
}
TopoSort(); //拓扑排序
}
}
void TopoSort(){
queue<int> q;
int u,v;
int node = 0;
for(u = 0; u < n; u++){ //将入度为0的顶点入队
if(InDegree[u] == 0){
q.push(u);
}
}
while(!q.empty()){ //若队列非空
u = q.front();
q.pop(); //u出队
for(v = 0; v < n; v ++){ //扫描u的邻接点
if(G[u][v] != 0){
InDegree[v]--; //邻接点入度-1
if(InDegree[v] == 0) //若入度变为0,入队
q.push(v);
}
}
node++; //已完成拓扑排序的顶点数目+1
}
if(node == n) printf("0"); //拓扑排序成功:无有向环
else printf("1"); //拓扑排序失败:存在有向环
}
题后反思
- 判断有向图中是否有环: 拓扑排序
- 拓扑排序易错点:两层判断是嵌套关系,否则会进入死循环!!!
if(G[u][v] != 0){ InDegree[v]--; //邻接点入度-1 if(InDegree[v] == 0) //若入度变为0,入队 q.push(v); }
- 写多点测试题时注意全局变量的初始化【
fill(InDegree,InDegree+MaxN,0); //每次都要重置InDegree数组!
】否则样例输出011