<数据结构>BinarySearchTree的基本操作总结
ADT
结构声明
#include<stdio.h>
#include<stdlib.h>
#define ElementType int
struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;
struct TreeNode
{
ElementType Element;
SearchTree Left;
SearchTree Right;
};
核心操作集
Position Find(int X, SearchTree T);
SearchTree Insert(int X, SearchTree T);
SearchTree Delete(int X, SearchTree T);
void PreOrderTraversal(SearchTree BT);
void InOrderTraversal(SearchTree BT);
void PostOrderTraversal(SearchTree BT);
void LevelOrderTraversal(SearchTree BT);
各操作实现
说明:SearchTree是递归定义,故操作多以递归实现,不再尝试转换为非递归实现
Find(),Insert(),Delete()
Position Find(int X, SearchTree T)
{
if(T == NULL)
return NULL;
if(X < T->Element)
return Find(X, T->Left);
else
if(X > T->Element)
return Find(X, T->Right);
else
return T;
}
SearchTree Insert(int X, SearchTree T)
{
if(T == NULL)
{
/*creat and return a one-node tree*/
T = (SearchTree)malloc(sizeof(struct TreeNode));
T->Element = X;
T->Left = T->Right = NULL;
}
else
if(X < T->Element)
T->Left = Insert(X, T->Left);
else
if(X > T->Element)
T->Right = Insert(X, T->Right);
return T;
}
SearchTree Delete(int X, SearchTree T)
{
Position TmpCell;
if(T == NULL)
printf("Element not found");
else
if(X < T->Element) /*Go Left*/
T->Left = Delete(X, T->Left);
else
if(X > T->Element) /*Go Right*/
T->Right = Delete(X, T->Right);
else
if(T->Left && T->Right) /*Two children*/
{
TmpCell = FindMax(T->Right);
T->Element = TmpCell->Element;
T->Right = Delete(T->Element, T->Right);
}
else /*One or Zero Children*/
{
TmpCell = T;
if(T->Left == NULL)
T = T->Right;
if(T->Right == NULL)
T = T->Left;
free(TmpCell);
}
return T;
}
Traverse():前中后、层
void PreOrderTraverse(BinaryTree BT)
{
if(BT)
{
printf("%d", BT->Element);
PreOrderTraversal(BT->Left);
PreOrderTraversal(BT->Right);
}
}
InOrderTraverse()以及PostOrderTraverse()只需改变'printf()'位置即可'
void LevelOrderTraversal(BinaryTree BT)
{
/*手法类似于BFS*/
queue<BinaryTree> Q;
BinaryTree T;
if(!BT) return;
Q.push(BT);
while(!Q.empty())
{
T = Q.front();
printf("%d ",T->Element);
Q.pop();
if(T->Left) Q.push(T->Left);
if(T->Right) Q.push(T->Right);
}
}