剖析虚幻渲染体系(10)- RHI
10.1 本篇概述
RHI全称是Render Hardware Interface(渲染硬件接口),是UE渲染体系中非常基础且重要的模块,封装了众多图形API(DirectX、OpenGL、Vulkan、Metal)之间的差异,对Game和Renderer模块提供了简便且一致的概念、数据、资源和接口,实现一份渲染代码跑在多个平台的目标。
Game、Renderer、RHI分层示意图,其中RHI是平台相关的内容。
最初的RHI是基于D3D11 API设计而成,包含了资源管理和命令接口:
开启RHI线程的情况下,与RHI相伴相随的还有RHI线程,它负责将渲染线程Push进来的RHI中间指令转译到对应图形平台的GPU指令。在部分图形API(DX12、Vulkan、主机)支持并行的情况下,如果渲染线程是并行生成的RHI中间指令,那么RHI线程也会并行转译。
UE4的渲染线程并行生成中间指令和RHI线程并行转译后提交渲染指令示意图。
本篇将着重阐述RHI的基础概念、类型、接口,它们之间的关联,涉及的原理和机制等内容,也会少量涉及具体图形API的实现细节。
10.2 RHI基础
本章将分析RHI涉及的基础概念和类型,阐述它们之间的关系和原理。
10.2.1 FRenderResource
FRenderResource是渲染线程的渲染资源代表,由渲染线程管理和传递,介于游戏线程和RHI线程的中间数据。由于之前篇章虽然有涉及它的概念,但没有详细阐述,所以放到此篇章中。FRenderResource的定义如下:
// Engine\Source\Runtime\RenderCore\Public\RenderResource.h
class RENDERCORE_API FRenderResource
{
public:
// 遍历所有资源, 执行回调接口.
template<typename FunctionType>
static void ForAllResources(const FunctionType& Function);
static void InitRHIForAllResources();
static void ReleaseRHIForAllResources();
static void ChangeFeatureLevel(ERHIFeatureLevel::Type NewFeatureLevel);
FRenderResource();
FRenderResource(ERHIFeatureLevel::Type InFeatureLevel);
virtual ~FRenderResource();
// 以下接口只能被渲染线程调用.
// 初始化此资源的动态RHI资源和(或)RHI渲染目标纹理.
virtual void InitDynamicRHI() {}
// 释放此资源的动态RHI资源和(或)RHI渲染目标纹理.
virtual void ReleaseDynamicRHI() {}
// 初始化此资源使用的RHI资源.
virtual void InitRHI() {}
// 释放此资源使用的RHI资源.
virtual void ReleaseRHI() {}
// 初始化资源.
virtual void InitResource();
// 释放资源.
virtual void ReleaseResource();
// 如果RHI资源已被初始化, 会被释放并重新初始化.
void UpdateRHI();
virtual FString GetFriendlyName() const { return TEXT("undefined"); }
FORCEINLINE bool IsInitialized() const { return ListIndex != INDEX_NONE; }
static void InitPreRHIResources();
private:
// 全局资源列表(静态).
static TArray<FRenderResource*>& GetResourceList();
static FThreadSafeCounter ResourceListIterationActive;
int32 ListIndex;
TEnumAsByte<ERHIFeatureLevel::Type> FeatureLevel;
(......)
};
下面是游戏线程向渲染线程发送操作FRenderResource的接口:
// 初始化/更新/释放资源.
extern RENDERCORE_API void BeginInitResource(FRenderResource* Resource);
extern RENDERCORE_API void BeginUpdateResourceRHI(FRenderResource* Resource);
extern RENDERCORE_API void BeginReleaseResource(FRenderResource* Resource);
extern RENDERCORE_API void StartBatchedRelease();
extern RENDERCORE_API void EndBatchedRelease();
extern RENDERCORE_API void ReleaseResourceAndFlush(FRenderResource* Resource);
FRenderResource只是基础父类,定义了一组渲染资源的行为,实际的数据和逻辑由子类实现。涉及的子类和层级比较多且复杂,下面是部分重要子类的定义:
// Engine\Source\Runtime\RenderCore\Public\RenderResource.h
// 纹理资源.
class FTexture : public FRenderResource
{
public:
FTextureRHIRef TextureRHI; // 纹理的RHI资源.
FSamplerStateRHIRef SamplerStateRHI; // 纹理的采样器RHI资源.
FSamplerStateRHIRef DeferredPassSamplerStateRHI; // 延迟通道采样器RHI资源.
mutable double LastRenderTime; // 上次渲染的时间.
FMipBiasFade MipBiasFade; // 淡入/淡出的Mip偏移值.
bool bGreyScaleFormat; // 灰度图.
bool bIgnoreGammaConversions; // 是否忽略Gamma转换.
bool bSRGB; // 是否sRGB空间的颜色.
virtual uint32 GetSizeX() const;
virtual uint32 GetSizeY() const;
virtual uint32 GetSizeZ() const;
// 释放资源.
virtual void ReleaseRHI() override
{
TextureRHI.SafeRelease();
SamplerStateRHI.SafeRelease();
DeferredPassSamplerStateRHI.SafeRelease();
}
virtual FString GetFriendlyName() const override { return TEXT("FTexture"); }
(......)
protected:
RENDERCORE_API static FRHISamplerState* GetOrCreateSamplerState(const FSamplerStateInitializerRHI& Initializer);
};
// 包含了SRV/UAV的纹理资源.
class FTextureWithSRV : public FTexture
{
public:
// 访问整张纹理的SRV.
FShaderResourceViewRHIRef ShaderResourceViewRHI;
// 访问整张纹理的UAV.
FUnorderedAccessViewRHIRef UnorderedAccessViewRHI;
virtual void ReleaseRHI() override;
};
// 持有RHI纹理资源引用的渲染资源.
class RENDERCORE_API FTextureReference : public FRenderResource
{
public:
// 纹理的RHI资源引用.
FTextureReferenceRHIRef TextureReferenceRHI;
// FRenderResource interface.
virtual void InitRHI();
virtual void ReleaseRHI();
(......)
};
class RENDERCORE_API FVertexBuffer : public FRenderResource
{
public:
// 顶点缓冲的RHI资源引用.
FVertexBufferRHIRef VertexBufferRHI;
virtual void ReleaseRHI() override;
(......);
};
class RENDERCORE_API FVertexBufferWithSRV : public FVertexBuffer
{
public:
// 访问整个缓冲区的SRV/UAV.
FShaderResourceViewRHIRef ShaderResourceViewRHI;
FUnorderedAccessViewRHIRef UnorderedAccessViewRHI;
(......)
};
// 索引缓冲.
class FIndexBuffer : public FRenderResource
{
public:
// 索引缓冲对应的RHI资源.
FIndexBufferRHIRef IndexBufferRHI;
(......)
};
以上可知,FRenderResource的子类就是对应地将RHI的子类资源封装起来,以便渲染线程将游戏线程的数据和操作传递到RHI线程(或模块)中。下面来个UML图将FRenderResource的部分继承体系直观地呈现出来:
如果看不清请点击下面的图片:
再次强调,以上只是FRenderResource的部分继承体系,无法完整地绘制出来。可知FRenderResource拥有庞大的子类层级关系,以适应和满足UE渲染体系在资源方面复杂多变的的需求。
10.2.2 FRHIResource
FRHIResource抽象了GPU侧的资源,也是众多RHI资源类型的父类。定义如下:
// Engine\Source\Runtime\RHI\Public\RHIResources.h
class RHI_API FRHIResource
{
public:
FRHIResource(bool InbDoNotDeferDelete = false);
virtual ~FRHIResource();
// 资源的引用计数.
uint32 AddRef() const;
uint32 Release() const
{
int32 NewValue = NumRefs.Decrement();
if (NewValue == 0)
{
if (!DeferDelete())
{
delete this;
}
else
{
// 加入待删除列表.
if (FPlatformAtomics::InterlockedCompareExchange(&MarkedForDelete, 1, 0) == 0)
{
PendingDeletes.Push(const_cast<FRHIResource*>(this));
}
}
}
return uint32(NewValue);
}
uint32 GetRefCount() const;
// 静态接口.
static void FlushPendingDeletes(bool bFlushDeferredDeletes = false);
static bool PlatformNeedsExtraDeletionLatency();
static bool Bypass();
void DoNoDeferDelete();
// 瞬时资源追踪.
void SetCommitted(bool bInCommitted);
bool IsCommitted() const;
bool IsValid() const;
private:
// 运行时标记和数据.
mutable FThreadSafeCounter NumRefs;
mutable int32 MarkedForDelete;
bool bDoNotDeferDelete;
bool bCommitted;
// 待删除的资源.
static TLockFreePointerListUnordered<FRHIResource, PLATFORM_CACHE_LINE_SIZE> PendingDeletes;
// 正在删除的资源.
static FRHIResource* CurrentlyDeleting;
bool DeferDelete() const;
// 有些api不做内部引用计数,所以必须在删除资源之前等待额外的几帧,以确保GPU完全完成它们. 可避免昂贵的栅栏等.
struct ResourcesToDelete
{
TArray<FRHIResource*> Resources; // 待删除的资源.
uint32 FrameDeleted; // 等待的帧数.
(......)
};
// 延迟删除的资源队列.
static TArray<ResourcesToDelete> DeferredDeletionQueue;
static uint32 CurrentFrame;
};
以上可知,FRHIResource提供了几种功能:引用计数、延迟删除及追踪、运行时数据和标记。它拥有数量众多的子类,主要有:
// Engine\Source\Runtime\RHI\Public\RHIResources.h
// 状态块(State blocks)资源
class FRHISamplerState : public FRHIResource
{
public:
virtual bool IsImmutable() const { return false; }
};
class FRHIRasterizerState : public FRHIResource
{
public:
virtual bool GetInitializer(struct FRasterizerStateInitializerRHI& Init) { return false; }
};
class FRHIDepthStencilState : public FRHIResource
{
public:
virtual bool GetInitializer(struct FDepthStencilStateInitializerRHI& Init) { return false; }
};
class FRHIBlendState : public FRHIResource
{
public:
virtual bool GetInitializer(class FBlendStateInitializerRHI& Init) { return false; }
};
// 着色器绑定资源.
typedef TArray<struct FVertexElement,TFixedAllocator<MaxVertexElementCount> > FVertexDeclarationElementList;
class FRHIVertexDeclaration : public FRHIResource
{
public:
virtual bool GetInitializer(FVertexDeclarationElementList& Init) { return false; }
};
class FRHIBoundShaderState : public FRHIResource {};
// 着色器
class FRHIShader : public FRHIResource
{
public:
void SetHash(FSHAHash InHash);
FSHAHash GetHash() const;
explicit FRHIShader(EShaderFrequency InFrequency);
inline EShaderFrequency GetFrequency() const;
private:
FSHAHash Hash;
EShaderFrequency Frequency;
};
class FRHIGraphicsShader : public FRHIShader
{
public:
explicit FRHIGraphicsShader(EShaderFrequency InFrequency) : FRHIShader(InFrequency) {}
};
class FRHIVertexShader : public FRHIGraphicsShader
{
public:
FRHIVertexShader() : FRHIGraphicsShader(SF_Vertex) {}
};
class FRHIHullShader : public FRHIGraphicsShader
{
public:
FRHIHullShader() : FRHIGraphicsShader(SF_Hull) {}
};
class FRHIDomainShader : public FRHIGraphicsShader
{
public:
FRHIDomainShader() : FRHIGraphicsShader(SF_Domain) {}
};
class FRHIPixelShader : public FRHIGraphicsShader
{
public:
FRHIPixelShader() : FRHIGraphicsShader(SF_Pixel) {}
};
class FRHIGeometryShader : public FRHIGraphicsShader
{
public:
FRHIGeometryShader() : FRHIGraphicsShader(SF_Geometry) {}
};
class RHI_API FRHIComputeShader : public FRHIShader
{
public:
FRHIComputeShader() : FRHIShader(SF_Compute), Stats(nullptr) {}
inline void SetStats(struct FPipelineStateStats* Ptr) { Stats = Ptr; }
void UpdateStats();
private:
struct FPipelineStateStats* Stats;
};
// 管线状态
class FRHIGraphicsPipelineState : public FRHIResource {};
class FRHIComputePipelineState : public FRHIResource {};
class FRHIRayTracingPipelineState : public FRHIResource {};
// 缓冲区.
class FRHIUniformBuffer : public FRHIResource
{
public:
FRHIUniformBuffer(const FRHIUniformBufferLayout& InLayout);
FORCEINLINE_DEBUGGABLE uint32 AddRef() const;
FORCEINLINE_DEBUGGABLE uint32 Release() const;
uint32 GetSize() const;
const FRHIUniformBufferLayout& GetLayout() const;
bool HasStaticSlot() const;
private:
const FRHIUniformBufferLayout* Layout;
uint32 LayoutConstantBufferSize;
};
class FRHIIndexBuffer : public FRHIResource
{
public:
FRHIIndexBuffer(uint32 InStride,uint32 InSize,uint32 InUsage);
uint32 GetStride() const;
uint32 GetSize() const;
uint32 GetUsage() const;
protected:
FRHIIndexBuffer();
void Swap(FRHIIndexBuffer& Other);
void ReleaseUnderlyingResource();
private:
uint32 Stride;
uint32 Size;
uint32 Usage;
};
class FRHIVertexBuffer : public FRHIResource
{
public:
FRHIVertexBuffer(uint32 InSize,uint32 InUsage)
uint32 GetSize() const;
uint32 GetUsage() const;
protected:
FRHIVertexBuffer();
void Swap(FRHIVertexBuffer& Other);
void ReleaseUnderlyingResource();
private:
uint32 Size;
// e.g. BUF_UnorderedAccess
uint32 Usage;
};
class FRHIStructuredBuffer : public FRHIResource
{
public:
FRHIStructuredBuffer(uint32 InStride,uint32 InSize,uint32 InUsage)
uint32 GetStride() const;
uint32 GetSize() const;
uint32 GetUsage() const;
private:
uint32 Stride;
uint32 Size;
uint32 Usage;
};
// 纹理
class FRHITexture : public FRHIResource
{
public:
FRHITexture(uint32 InNumMips, uint32 InNumSamples, EPixelFormat InFormat, uint32 InFlags, FLastRenderTimeContainer* InLastRenderTime, const FClearValueBinding& InClearValue);
// 动态类型转换接口.
virtual class FRHITexture2D* GetTexture2D();
virtual class FRHITexture2DArray* GetTexture2DArray();
virtual class FRHITexture3D* GetTexture3D();
virtual class FRHITextureCube* GetTextureCube();
virtual class FRHITextureReference* GetTextureReference();
virtual FIntVector GetSizeXYZ() const = 0;
// 获取平台相关的原生资源指针.
virtual void* GetNativeResource() const;
virtual void* GetNativeShaderResourceView() const
// 获取平台相关的RHI纹理基类.
virtual void* GetTextureBaseRHI();
// 数据接口.
uint32 GetNumMips() const;
EPixelFormat GetFormat();
uint32 GetFlags() const;
uint32 GetNumSamples() const;
bool IsMultisampled() const;
bool HasClearValue() const;
FLinearColor GetClearColor() const;
void GetDepthStencilClearValue(float& OutDepth, uint32& OutStencil) const;
float GetDepthClearValue() const;
uint32 GetStencilClearValue() const;
const FClearValueBinding GetClearBinding() const;
virtual void GetWriteMaskProperties(void*& OutData, uint32& OutSize);
(......)
// RHI资源信息.
FRHIResourceInfo ResourceInfo;
private:
// 纹理数据.
FClearValueBinding ClearValue;
uint32 NumMips;
uint32 NumSamples;
EPixelFormat Format;
uint32 Flags;
FLastRenderTimeContainer& LastRenderTime;
FLastRenderTimeContainer DefaultLastRenderTime;
FName TextureName;
};
// 2D RHI纹理.
class FRHITexture2D : public FRHITexture
{
public:
FRHITexture2D(uint32 InSizeX,uint32 InSizeY,uint32 InNumMips,uint32 InNumSamples,EPixelFormat InFormat,uint32 InFlags, const FClearValueBinding& InClearValue);
virtual FRHITexture2D* GetTexture2D() { return this; }
uint32 GetSizeX() const { return SizeX; }
uint32 GetSizeY() const { return SizeY; }
inline FIntPoint GetSizeXY() const;
virtual FIntVector GetSizeXYZ() const override;
private:
uint32 SizeX;
uint32 SizeY;
};
// 2D RHI纹理数组.
class FRHITexture2DArray : public FRHITexture2D
{
public:
FRHITexture2DArray(uint32 InSizeX,uint32 InSizeY,uint32 InSizeZ,uint32 InNumMips,uint32 NumSamples, EPixelFormat InFormat,uint32 InFlags, const FClearValueBinding& InClearValue);
virtual FRHITexture2DArray* GetTexture2DArray() { return this; }
virtual FRHITexture2D* GetTexture2D() { return NULL; }
uint32 GetSizeZ() const { return SizeZ; }
virtual FIntVector GetSizeXYZ() const final override;
private:
uint32 SizeZ;
};
// 2D RHI纹理.
class FRHITexture3D : public FRHITexture
{
public:
FRHITexture3D(uint32 InSizeX,uint32 InSizeY,uint32 InSizeZ,uint32 InNumMips,EPixelFormat InFormat,uint32 InFlags, const FClearValueBinding& InClearValue);
virtual FRHITexture3D* GetTexture3D() { return this; }
uint32 GetSizeX() const { return SizeX; }
uint32 GetSizeY() const { return SizeY; }
uint32 GetSizeZ() const { return SizeZ; }
virtual FIntVector GetSizeXYZ() const final override;
private:
uint32 SizeX;
uint32 SizeY;
uint32 SizeZ;
};
// 立方体RHI纹理.
class FRHITextureCube : public FRHITexture
{
public:
FRHITextureCube(uint32 InSize,uint32 InNumMips,EPixelFormat InFormat,uint32 InFlags, const FClearValueBinding& InClearValue);
virtual FRHITextureCube* GetTextureCube();
uint32 GetSize() const;
virtual FIntVector GetSizeXYZ() const final override;
private:
uint32 Size;
};
// 纹理引用.
class FRHITextureReference : public FRHITexture
{
public:
explicit FRHITextureReference(FLastRenderTimeContainer* InLastRenderTime);
virtual FRHITextureReference* GetTextureReference() override { return this; }
inline FRHITexture* GetReferencedTexture() const;
// 设置引用的纹理
void SetReferencedTexture(FRHITexture* InTexture);
virtual FIntVector GetSizeXYZ() const final override;
private:
// 被引用的纹理资源.
TRefCountPtr<FRHITexture> ReferencedTexture;
};
class FRHITextureReferenceNullImpl : public FRHITextureReference
{
public:
FRHITextureReferenceNullImpl();
void SetReferencedTexture(FRHITexture* InTexture)
{
FRHITextureReference::SetReferencedTexture(InTexture);
}
};
// 杂项资源.
// 时间戳校准查询.
class FRHITimestampCalibrationQuery : public FRHIResource
{
public:
uint64 GPUMicroseconds = 0;
uint64 CPUMicroseconds = 0;
};
// GPU栅栏类. 粒度因RHI而异,即它可能只表示命令缓冲区粒度. RHI的特殊围栏由此派生而来,实现了真正的GPU->CPU栅栏.
// 默认实现总是为轮询(Poll)返回false,直到插入栅栏的下一帧,因为不是所有api都有GPU/CPU同步对象,需要伪造它。
class FRHIGPUFence : public FRHIResource
{
public:
FRHIGPUFence(FName InName) : FenceName(InName) {}
virtual ~FRHIGPUFence() {}
virtual void Clear() = 0;
// 轮询围栏,看看GPU是否已经发出信号. 如果是, 则返回true.
virtual bool Poll() const = 0;
// 轮询GPU的子集.
virtual bool Poll(FRHIGPUMask GPUMask) const { return Poll(); }
// 等待写入命令的数量.
FThreadSafeCounter NumPendingWriteCommands;
protected:
FName FenceName;
};
// 通用的FRHIGPUFence实现.
class RHI_API FGenericRHIGPUFence : public FRHIGPUFence
{
public:
FGenericRHIGPUFence(FName InName);
virtual void Clear() final override;
virtual bool Poll() const final override;
void WriteInternal();
private:
uint32 InsertedFrameNumber;
};
// 渲染查询.
class FRHIRenderQuery : public FRHIResource
{
};
// 池化的渲染查询.
class RHI_API FRHIPooledRenderQuery
{
TRefCountPtr<FRHIRenderQuery> Query;
FRHIRenderQueryPool* QueryPool = nullptr;
public:
bool IsValid() const;
FRHIRenderQuery* GetQuery() const;
void ReleaseQuery();
(.....)
};
// 渲染查询池.
class FRHIRenderQueryPool : public FRHIResource
{
public:
virtual ~FRHIRenderQueryPool() {};
virtual FRHIPooledRenderQuery AllocateQuery() = 0;
private:
friend class FRHIPooledRenderQuery;
virtual void ReleaseQuery(TRefCountPtr<FRHIRenderQuery>&& Query) = 0;
};
// 计算栅栏.
class FRHIComputeFence : public FRHIResource
{
public:
FRHIComputeFence(FName InName);
FORCEINLINE bool GetWriteEnqueued() const;
virtual void Reset();
virtual void WriteFence();
private:
// 自创建以来,标记标签是否被写入. 在命令创建时,当队列等待捕获CPU上的GPU挂起时,检查这个标记.
bool bWriteEnqueued;
};
// 视口.
class FRHIViewport : public FRHIResource
{
public:
// 获取平台相关的原生交换链.
virtual void* GetNativeSwapChain() const { return nullptr; }
// 获取原生的BackBuffer纹理.
virtual void* GetNativeBackBufferTexture() const { return nullptr; }
// 获取原生的BackBuffer渲染纹理.
virtual void* GetNativeBackBufferRT() const { return nullptr; }
// 获取原生的窗口.
virtual void* GetNativeWindow(void** AddParam = nullptr) const { return nullptr; }
// 在视口上设置FRHICustomPresent的handler.
virtual void SetCustomPresent(class FRHICustomPresent*) {}
virtual class FRHICustomPresent* GetCustomPresent() const { return nullptr; }
// 在游戏线程帧更新视口.
virtual void Tick(float DeltaTime) {}
};
// 视图: UAV/SRV
class FRHIUnorderedAccessView : public FRHIResource {};
class FRHIShaderResourceView : public FRHIResource {};
// 各种RHI资源引用类型定义.
typedef TRefCountPtr<FRHISamplerState> FSamplerStateRHIRef;
typedef TRefCountPtr<FRHIRasterizerState> FRasterizerStateRHIRef;
typedef TRefCountPtr<FRHIDepthStencilState> FDepthStencilStateRHIRef;
typedef TRefCountPtr<FRHIBlendState> FBlendStateRHIRef;
typedef TRefCountPtr<FRHIVertexDeclaration> FVertexDeclarationRHIRef;
typedef TRefCountPtr<FRHIVertexShader> FVertexShaderRHIRef;
typedef TRefCountPtr<FRHIHullShader> FHullShaderRHIRef;
typedef TRefCountPtr<FRHIDomainShader> FDomainShaderRHIRef;
typedef TRefCountPtr<FRHIPixelShader> FPixelShaderRHIRef;
typedef TRefCountPtr<FRHIGeometryShader> FGeometryShaderRHIRef;
typedef TRefCountPtr<FRHIComputeShader> FComputeShaderRHIRef;
typedef TRefCountPtr<FRHIRayTracingShader> FRayTracingShaderRHIRef;
typedef TRefCountPtr<FRHIComputeFence> FComputeFenceRHIRef;
typedef TRefCountPtr<FRHIBoundShaderState> FBoundShaderStateRHIRef;
typedef TRefCountPtr<FRHIUniformBuffer> FUniformBufferRHIRef;
typedef TRefCountPtr<FRHIIndexBuffer> FIndexBufferRHIRef;
typedef TRefCountPtr<FRHIVertexBuffer> FVertexBufferRHIRef;
typedef TRefCountPtr<FRHIStructuredBuffer> FStructuredBufferRHIRef;
typedef TRefCountPtr<FRHITexture> FTextureRHIRef;
typedef TRefCountPtr<FRHITexture2D> FTexture2DRHIRef;
typedef TRefCountPtr<FRHITexture2DArray> FTexture2DArrayRHIRef;
typedef TRefCountPtr<FRHITexture3D> FTexture3DRHIRef;
typedef TRefCountPtr<FRHITextureCube> FTextureCubeRHIRef;
typedef TRefCountPtr<FRHITextureReference> FTextureReferenceRHIRef;
typedef TRefCountPtr<FRHIRenderQuery> FRenderQueryRHIRef;
typedef TRefCountPtr<FRHIRenderQueryPool> FRenderQueryPoolRHIRef;
typedef TRefCountPtr<FRHITimestampCalibrationQuery> FTimestampCalibrationQueryRHIRef;
typedef TRefCountPtr<FRHIGPUFence> FGPUFenceRHIRef;
typedef TRefCountPtr<FRHIViewport> FViewportRHIRef;
typedef TRefCountPtr<FRHIUnorderedAccessView> FUnorderedAccessViewRHIRef;
typedef TRefCountPtr<FRHIShaderResourceView> FShaderResourceViewRHIRef;
typedef TRefCountPtr<FRHIGraphicsPipelineState> FGraphicsPipelineStateRHIRef;
typedef TRefCountPtr<FRHIRayTracingPipelineState> FRayTracingPipelineStateRHIRef;
// FRHIGPUMemoryReadback使用的通用分段缓冲类.
class FRHIStagingBuffer : public FRHIResource
{
public:
FRHIStagingBuffer();
virtual ~FRHIStagingBuffer();
virtual void *Lock(uint32 Offset, uint32 NumBytes) = 0;
virtual void Unlock() = 0;
protected:
bool bIsLocked;
};
class FGenericRHIStagingBuffer : public FRHIStagingBuffer
{
public:
FGenericRHIStagingBuffer();
~FGenericRHIStagingBuffer();
virtual void* Lock(uint32 Offset, uint32 NumBytes) final override;
virtual void Unlock() final override;
FVertexBufferRHIRef ShadowBuffer;
uint32 Offset;
};
// 自定义呈现.
class FRHICustomPresent : public FRHIResource
{
public:
FRHICustomPresent() {}
virtual ~FRHICustomPresent() {}
// 视口尺寸改变时的调用.
virtual void OnBackBufferResize() = 0;
// 从渲染线程中调用,以查看是否会请求一个原生呈现。
virtual bool NeedsNativePresent() = 0;
// RHI线程调用, 执行自定义呈现.
virtual bool Present(int32& InOutSyncInterval) = 0;
// RHI线程调用, 在Present之后调用.
virtual void PostPresent() {};
// 当渲染线程被捕获时调用.
virtual void OnAcquireThreadOwnership() {}
// 当渲染线程被释放时调用.
virtual void OnReleaseThreadOwnership() {}
};
以上可知,FRHIResource的种类和子类都非常多,可分为状态块、着色器绑定、着色器、管线状态、缓冲区、纹理、视图以及其它杂项。需要注意的是,以上只是显示了平台无关的基础类型,实际上,在不同的图形API中,会继承上面的类型。以FRHIUniformBuffer为例,它的继承体系如下:
以上显示出FRHIUniformBuffer在D3D11、D3D12、OpenGL、Vulkan、Metal等图形API的子类,以便实现统一缓冲区的平台相关的资源和操作接口,还有一个特殊的空实现FEmptyUniformBuffer。
与FRHIUniformBuffer类似的是,FRHIResource的其它直接或间接子类也需要被具体的图形API或操作系统子类实现,以支持在该平台的渲染。下面绘制出最复杂的纹理资源类继承体系UML图:
如果看不清请点击放大下面的图片版本:
需要注意,上图做了简化,除了FRHITexture2D会被各个图形API继承子类,其它纹理类型(如FRHITexture2DArray、FRHITexture3D、FRHITextureCube、FRHITextureReference)也会被各个平台继承并实现。
10.2.3 FRHICommand
FRHICommand是RHI模块的渲染指令基类,这些指令通常由渲染线程通过命令队列Push到RHI线程,在合适的时机由RHI线程执行。FRHICommand同时又继承自FRHICommandBase,它们的定义如下:
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
// RHI命令基类.
struct FRHICommandBase
{
// 下一个命令. (命令链表的节点)
FRHICommandBase* Next = nullptr;
// 执行命令后销毁.
virtual void ExecuteAndDestruct(FRHICommandListBase& CmdList, FRHICommandListDebugContext& DebugContext) = 0;
};
emplate<typename TCmd, typename NameType = FUnnamedRhiCommand>
struct FRHICommand : public FRHICommandBase
{
// 执行命令后销毁.
void ExecuteAndDestruct(FRHICommandListBase& CmdList, FRHICommandListDebugContext& Context) override final
{
TCmd *ThisCmd = static_cast<TCmd*>(this);
ThisCmd->Execute(CmdList);
ThisCmd->~TCmd();
}
};
值得一提的是,FRHICommandBase有指向下一个节点的Next变量,意味着FRHICommandBase是命令链表的节点。FRHICommand拥有数量众多的子类,是通过特殊的宏来快速声明:
// 定义RHI命令子类的宏
#define FRHICOMMAND_MACRO(CommandName) \
struct PREPROCESSOR_JOIN(CommandName##String, __LINE__) \
{ \
static const TCHAR* TStr() { return TEXT(#CommandName); } \
}; \
// 命令继承了FRHICommand.
struct CommandName final : public FRHICommand<CommandName, PREPROCESSOR_JOIN(CommandName##String, __LINE__)>
有了以上的宏,就可以快速定义FRHICommand的子类(亦即具体的RHI命令),例如:
FRHICOMMAND_MACRO(FRHICommandSetStencilRef)
{
uint32 StencilRef;
FORCEINLINE_DEBUGGABLE FRHICommandSetStencilRef(uint32 InStencilRef)
: StencilRef(InStencilRef)
{
}
RHI_API void Execute(FRHICommandListBase& CmdList);
};
展开宏定义之后,代码如下:
struct FRHICommandSetStencilRefString853
{
static const TCHAR* TStr() { return TEXT("FRHICommandSetStencilRef"); }
};
// FRHICommandSetStencilRef继承了FRHICommand.
struct FRHICommandSetStencilRef final : public FRHICommand<FRHICommandSetStencilRef, FRHICommandSetStencilRefString853>
{
uint32 StencilRef;
FRHICommandSetStencilRef(uint32 InStencilRef)
: StencilRef(InStencilRef)
{
}
RHI_API void Execute(FRHICommandListBase& CmdList);
};
利用FRHICOMMAND_MACRO声明的RHI命令数量众多,下面列举其中一部分:
FRHICOMMAND_MACRO(FRHISyncFrameCommand)
FRHICOMMAND_MACRO(FRHICommandStat)
FRHICOMMAND_MACRO(FRHICommandRHIThreadFence)
FRHICOMMAND_MACRO(FRHIAsyncComputeSubmitList)
FRHICOMMAND_MACRO(FRHICommandSubmitSubList)
FRHICOMMAND_MACRO(FRHICommandWaitForAndSubmitSubListParallel)
FRHICOMMAND_MACRO(FRHICommandWaitForAndSubmitSubList)
FRHICOMMAND_MACRO(FRHICommandWaitForAndSubmitRTSubList)
FRHICOMMAND_MACRO(FRHICommandWaitForTemporalEffect)
FRHICOMMAND_MACRO(FRHICommandWaitForTemporalEffect)
FRHICOMMAND_MACRO(FRHICommandBroadcastTemporalEffect)
FRHICOMMAND_MACRO(FRHICommandBeginUpdateMultiFrameResource)
FRHICOMMAND_MACRO(FRHICommandEndUpdateMultiFrameResource)
FRHICOMMAND_MACRO(FRHICommandBeginUpdateMultiFrameUAV)
FRHICOMMAND_MACRO(FRHICommandEndUpdateMultiFrameUAV)
FRHICOMMAND_MACRO(FRHICommandSetGPUMask)
FRHICOMMAND_MACRO(FRHICommandSetStencilRef)
FRHICOMMAND_MACRO(FRHICommandSetBlendFactor)
FRHICOMMAND_MACRO(FRHICommandSetStreamSource)
FRHICOMMAND_MACRO(FRHICommandSetStreamSource)
FRHICOMMAND_MACRO(FRHICommandSetViewport)
FRHICOMMAND_MACRO(FRHICommandSetScissorRect)
FRHICOMMAND_MACRO(FRHICommandBeginRenderPass)
FRHICOMMAND_MACRO(FRHICommandEndRenderPass)
FRHICOMMAND_MACRO(FRHICommandNextSubpass)
FRHICOMMAND_MACRO(FRHICommandBeginParallelRenderPass)
FRHICOMMAND_MACRO(FRHICommandEndParallelRenderPass)
FRHICOMMAND_MACRO(FRHICommandBeginRenderSubPass)
FRHICOMMAND_MACRO(FRHICommandEndRenderSubPass)
FRHICOMMAND_MACRO(FRHICommandDrawPrimitive)
FRHICOMMAND_MACRO(FRHICommandDrawIndexedPrimitive)
FRHICOMMAND_MACRO(FRHICommandDrawPrimitiveIndirect)
FRHICOMMAND_MACRO(FRHICommandDrawIndexedIndirect)
FRHICOMMAND_MACRO(FRHICommandDrawIndexedPrimitiveIndirect)
FRHICOMMAND_MACRO(FRHICommandSetGraphicsPipelineState)
FRHICOMMAND_MACRO(FRHICommandBeginUAVOverlap)
FRHICOMMAND_MACRO(FRHICommandEndUAVOverlap)
FRHICOMMAND_MACRO(FRHICommandSetDepthBounds)
FRHICOMMAND_MACRO(FRHICommandSetShadingRate)
FRHICOMMAND_MACRO(FRHICommandSetShadingRateImage)
FRHICOMMAND_MACRO(FRHICommandClearUAVFloat)
FRHICOMMAND_MACRO(FRHICommandCopyToResolveTarget)
FRHICOMMAND_MACRO(FRHICommandCopyTexture)
FRHICOMMAND_MACRO(FRHICommandBeginTransitions)
FRHICOMMAND_MACRO(FRHICommandEndTransitions)
FRHICOMMAND_MACRO(FRHICommandResourceTransition)
FRHICOMMAND_MACRO(FRHICommandClearColorTexture)
FRHICOMMAND_MACRO(FRHICommandClearDepthStencilTexture)
FRHICOMMAND_MACRO(FRHICommandClearColorTextures)
FRHICOMMAND_MACRO(FRHICommandSetGlobalUniformBuffers)
FRHICOMMAND_MACRO(FRHICommandBuildLocalUniformBuffer)
FRHICOMMAND_MACRO(FRHICommandBeginRenderQuery)
FRHICOMMAND_MACRO(FRHICommandEndRenderQuery)
FRHICOMMAND_MACRO(FRHICommandPollOcclusionQueries)
FRHICOMMAND_MACRO(FRHICommandBeginScene)
FRHICOMMAND_MACRO(FRHICommandEndScene)
FRHICOMMAND_MACRO(FRHICommandBeginFrame)
FRHICOMMAND_MACRO(FRHICommandEndFrame)
FRHICOMMAND_MACRO(FRHICommandBeginDrawingViewport)
FRHICOMMAND_MACRO(FRHICommandEndDrawingViewport)
FRHICOMMAND_MACRO(FRHICommandInvalidateCachedState)
FRHICOMMAND_MACRO(FRHICommandDiscardRenderTargets)
FRHICOMMAND_MACRO(FRHICommandUpdateTextureReference)
FRHICOMMAND_MACRO(FRHICommandUpdateRHIResources)
FRHICOMMAND_MACRO(FRHICommandBackBufferWaitTrackingBeginFrame)
FRHICOMMAND_MACRO(FRHICommandFlushTextureCacheBOP)
FRHICOMMAND_MACRO(FRHICommandCopyBufferRegion)
FRHICOMMAND_MACRO(FRHICommandCopyBufferRegions)
FRHICOMMAND_MACRO(FClearCachedRenderingDataCommand)
FRHICOMMAND_MACRO(FClearCachedElementDataCommand)
FRHICOMMAND_MACRO(FRHICommandRayTraceOcclusion)
FRHICOMMAND_MACRO(FRHICommandRayTraceIntersection)
FRHICOMMAND_MACRO(FRHICommandRayTraceDispatch)
FRHICOMMAND_MACRO(FRHICommandSetRayTracingBindings)
FRHICOMMAND_MACRO(FRHICommandClearRayTracingBindings)
FRHICommand的子类除了以上用FRHICOMMAND_MACRO声明的,还拥有以下直接派生的:
- FRHICommandSetShaderParameter
- FRHICommandSetShaderUniformBuffer
- FRHICommandSetShaderTexture
- FRHICommandSetShaderResourceViewParameter
- FRHICommandSetUAVParameter
- FRHICommandSetShaderSampler
- FRHICommandSetComputeShader
- FRHICommandSetComputePipelineState
- FRHICommandDispatchComputeShader
- FRHICommandDispatchIndirectComputeShader
- FRHICommandSetAsyncComputeBudget
- FRHICommandCopyToStagingBuffer
- FRHICommandWriteGPUFence
- FRHICommandSetLocalUniformBuffer
- FRHICommandSubmitCommandsHint
- FRHICommandPushEvent
- FRHICommandPopEvent
- FRHICommandBuildAccelerationStructure
- FRHICommandBuildAccelerationStructures
- ......
无论是直接派生还是用FRHICOMMAND_MACRO,没有本质的区别,都是FRHICommand的子类,都是可以提供给渲染线程操作的RHI层中间渲染命令。只是用FRHICOMMAND_MACRO会更简便,少写一些重复的代码罢了。
因此可知,RHI命令种类繁多,主要包含以下几大类:
- 数据和资源的设置、更新、清理、转换、拷贝、回读。
- 图元绘制。
- Pass、SubPass、场景、ViewPort等的开始和结束事件。
- 栅栏、等待、广播接口。
- 光线追踪。
- Slate、调试相关的命令。
下面绘制出FRHICommand的核心继承体系:
10.2.4 FRHICommandList
FRHICommandList是RHI的指令队列,用来管理、执行一组FRHICommand的对象。它和父类的定义如下:
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
// RHI命令列表基类.
class FRHICommandListBase : public FNoncopyable
{
public:
~FRHICommandListBase();
// 附带了循环利用的自定义new/delete操作.
void* operator new(size_t Size);
void operator delete(void *RawMemory);
// 刷新命令队列.
inline void Flush();
// 是否立即模式.
inline bool IsImmediate();
// 是否立即的异步计算.
inline bool IsImmediateAsyncCompute();
// 获取已占用的内存.
const int32 GetUsedMemory() const;
// 入队异步命令队列的提交.
void QueueAsyncCommandListSubmit(FGraphEventRef& AnyThreadCompletionEvent, class FRHICommandList* CmdList);
// 入队并行的异步命令队列的提交.
void QueueParallelAsyncCommandListSubmit(FGraphEventRef* AnyThreadCompletionEvents, bool bIsPrepass, class FRHICommandList** CmdLists, int32* NumDrawsIfKnown, int32 Num, int32 MinDrawsPerTranslate, bool bSpewMerge);
// 入队渲染线程命令队列的提交.
void QueueRenderThreadCommandListSubmit(FGraphEventRef& RenderThreadCompletionEvent, class FRHICommandList* CmdList);
// 入队命令队列的提交.
void QueueCommandListSubmit(class FRHICommandList* CmdList);
// 增加派发前序任务.
void AddDispatchPrerequisite(const FGraphEventRef& Prereq);
// 等待接口.
void WaitForTasks(bool bKnownToBeComplete = false);
void WaitForDispatch();
void WaitForRHIThreadTasks();
void HandleRTThreadTaskCompletion(const FGraphEventRef& MyCompletionGraphEvent);
// 分配接口.
void* Alloc(int32 AllocSize, int32 Alignment);
template <typename T>
void* Alloc();
template <typename T>
const TArrayView<T> AllocArray(const TArrayView<T> InArray);
TCHAR* AllocString(const TCHAR* Name);
// 分配指令.
void* AllocCommand(int32 AllocSize, int32 Alignment);
template <typename TCmd>
void* AllocCommand();
bool HasCommands() const;
bool IsExecuting() const;
bool IsBottomOfPipe() const;
bool IsTopOfPipe() const;
bool IsGraphics() const;
bool IsAsyncCompute() const;
// RHI管线, ERHIPipeline::Graphics或ERHIPipeline::AsyncCompute.
ERHIPipeline GetPipeline() const;
// 是否忽略RHI线程而直接当同步执行.
bool Bypass() const;
// 交换命令队列.
void ExchangeCmdList(FRHICommandListBase& Other);
// 设置Context.
void SetContext(IRHICommandContext* InContext);
IRHICommandContext& GetContext();
void SetComputeContext(IRHIComputeContext* InComputeContext);
IRHIComputeContext& GetComputeContext();
void CopyContext(FRHICommandListBase& ParentCommandList);
void MaybeDispatchToRHIThread();
void MaybeDispatchToRHIThreadInner();
(......)
private:
// 命令链表的头.
FRHICommandBase* Root;
// 指向Root的指针.
FRHICommandBase** CommandLink;
bool bExecuting;
uint32 NumCommands;
uint32 UID;
// 设备上下文.
IRHICommandContext* Context;
// 计算上下文.
IRHIComputeContext* ComputeContext;
FMemStackBase MemManager;
FGraphEventArray RTTasks;
// 重置.
void Reset();
public:
enum class ERenderThreadContext
{
SceneRenderTargets,
Num
};
// 渲染线程上下文.
void *RenderThreadContexts[(int32)ERenderThreadContext::Num];
protected:
//the values of this struct must be copied when the commandlist is split
struct FPSOContext
{
uint32 CachedNumSimultanousRenderTargets = 0;
TStaticArray<FRHIRenderTargetView, MaxSimultaneousRenderTargets> CachedRenderTargets;
FRHIDepthRenderTargetView CachedDepthStencilTarget;
ESubpassHint SubpassHint = ESubpassHint::None;
uint8 SubpassIndex = 0;
uint8 MultiViewCount = 0;
bool HasFragmentDensityAttachment = false;
} PSOContext;
// 绑定的着色器输入.
FBoundShaderStateInput BoundShaderInput;
// 绑定的计算着色器RHI资源.
FRHIComputeShader* BoundComputeShaderRHI;
// 使绑定的着色器生效.
void ValidateBoundShader(FRHIVertexShader* ShaderRHI);
void ValidateBoundShader(FRHIPixelShader* ShaderRHI);
(......)
void CacheActiveRenderTargets(...);
void CacheActiveRenderTargets(const FRHIRenderPassInfo& Info);
void IncrementSubpass();
void ResetSubpass(ESubpassHint SubpassHint);
public:
void CopyRenderThreadContexts(const FRHICommandListBase& ParentCommandList);
void SetRenderThreadContext(void* InContext, ERenderThreadContext Slot);
void* GetRenderThreadContext(ERenderThreadContext Slot);
// 通用数据.
struct FCommonData
{
class FRHICommandListBase* Parent = nullptr;
enum class ECmdListType
{
Immediate = 1,
Regular,
};
ECmdListType Type = ECmdListType::Regular;
bool bInsideRenderPass = false;
bool bInsideComputePass = false;
};
bool DoValidation() const;
inline bool IsOutsideRenderPass() const;
inline bool IsInsideRenderPass() const;
inline bool IsInsideComputePass() const;
FCommonData Data;
};
// 计算命令队列.
class FRHIComputeCommandList : public FRHICommandListBase
{
public:
FRHIComputeCommandList(FRHIGPUMask GPUMask) : FRHICommandListBase(GPUMask) {}
void* operator new(size_t Size);
void operator delete(void *RawMemory);
// 着色器参数设置和获取.
inline FRHIComputeShader* GetBoundComputeShader() const;
void SetGlobalUniformBuffers(const FUniformBufferStaticBindings& UniformBuffers);
void SetShaderUniformBuffer(FRHIComputeShader* Shader, uint32 BaseIndex, FRHIUniformBuffer* UniformBuffer);
void SetShaderUniformBuffer(const FComputeShaderRHIRef& Shader, uint32 BaseIndex, FRHIUniformBuffer* UniformBuffer);
void SetShaderParameter(FRHIComputeShader* Shader, uint32 BufferIndex, uint32 BaseIndex, uint32 NumBytes, const void* NewValue);
void SetShaderParameter(FComputeShaderRHIRef& Shader, uint32 BufferIndex, uint32 BaseIndex, uint32 NumBytes, const void* NewValue);
void SetShaderTexture(FRHIComputeShader* Shader, uint32 TextureIndex, FRHITexture* Texture);
void SetShaderResourceViewParameter(FRHIComputeShader* Shader, uint32 SamplerIndex, FRHIShaderResourceView* SRV);
void SetShaderSampler(FRHIComputeShader* Shader, uint32 SamplerIndex, FRHISamplerState* State);
void SetUAVParameter(FRHIComputeShader* Shader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV);
void SetUAVParameter(FRHIComputeShader* Shader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV, uint32 InitialCount);
void SetComputeShader(FRHIComputeShader* ComputeShader);
void SetComputePipelineState(FComputePipelineState* ComputePipelineState, FRHIComputeShader* ComputeShader);
void SetAsyncComputeBudget(EAsyncComputeBudget Budget);
// 派发计算着色器.
void DispatchComputeShader(uint32 ThreadGroupCountX, uint32 ThreadGroupCountY, uint32 ThreadGroupCountZ);
void DispatchIndirectComputeShader(FRHIVertexBuffer* ArgumentBuffer, uint32 ArgumentOffset);
// 清理.
void ClearUAVFloat(FRHIUnorderedAccessView* UnorderedAccessViewRHI, const FVector4& Values);
void ClearUAVUint(FRHIUnorderedAccessView* UnorderedAccessViewRHI, const FUintVector4& Values);
// 资源转换.
void BeginTransitions(TArrayView<const FRHITransition*> Transitions);
void EndTransitions(TArrayView<const FRHITransition*> Transitions);
inline void Transition(TArrayView<const FRHITransitionInfo> Infos);
void BeginTransition(const FRHITransition* Transition);
void EndTransition(const FRHITransition* Transition);
void Transition(const FRHITransitionInfo& Info)
// ---- 旧有的API ----
void TransitionResource(ERHIAccess TransitionType, const FTextureRHIRef& InTexture);
void TransitionResource(ERHIAccess TransitionType, FRHITexture* InTexture);
inline void TransitionResources(ERHIAccess TransitionType, FRHITexture* const* InTextures, int32 NumTextures);
void TransitionResourceArrayNoCopy(ERHIAccess TransitionType, TArray<FRHITexture*>& InTextures);
inline void TransitionResources(ERHIAccess TransitionType, EResourceTransitionPipeline /* ignored TransitionPipeline */, FRHIUnorderedAccessView* const* InUAVs, int32 NumUAVs, FRHIComputeFence* WriteFence);
void TransitionResource(ERHIAccess TransitionType, EResourceTransitionPipeline TransitionPipeline, FRHIUnorderedAccessView* InUAV, FRHIComputeFence* WriteFence);
void TransitionResource(ERHIAccess TransitionType, EResourceTransitionPipeline TransitionPipeline, FRHIUnorderedAccessView* InUAV);
void TransitionResources(ERHIAccess TransitionType, EResourceTransitionPipeline TransitionPipeline, FRHIUnorderedAccessView* const* InUAVs, int32 NumUAVs);
void WaitComputeFence(FRHIComputeFence* WaitFence);
void BeginUAVOverlap();
void EndUAVOverlap();
void BeginUAVOverlap(FRHIUnorderedAccessView* UAV);
void EndUAVOverlap(FRHIUnorderedAccessView* UAV);
void BeginUAVOverlap(TArrayView<FRHIUnorderedAccessView* const> UAVs);
void EndUAVOverlap(TArrayView<FRHIUnorderedAccessView* const> UAVs);
void PushEvent(const TCHAR* Name, FColor Color);
void PopEvent();
void BreakPoint();
void SubmitCommandsHint();
void CopyToStagingBuffer(FRHIVertexBuffer* SourceBuffer, FRHIStagingBuffer* DestinationStagingBuffer, uint32 Offset, uint32 NumBytes);
void WriteGPUFence(FRHIGPUFence* Fence);
void SetGPUMask(FRHIGPUMask InGPUMask);
(......)
};
// RHI命令队列.
class FRHICommandList : public FRHIComputeCommandList
{
public:
FRHICommandList(FRHIGPUMask GPUMask) : FRHIComputeCommandList(GPUMask) {}
bool AsyncPSOCompileAllowed() const;
void* operator new(size_t Size);
void operator delete(void *RawMemory);
// 获取绑定的着色器.
inline FRHIVertexShader* GetBoundVertexShader() const;
inline FRHIHullShader* GetBoundHullShader() const;
inline FRHIDomainShader* GetBoundDomainShader() const;
inline FRHIPixelShader* GetBoundPixelShader() const;
inline FRHIGeometryShader* GetBoundGeometryShader() const;
// 更新多帧资源.
void BeginUpdateMultiFrameResource(FRHITexture* Texture);
void EndUpdateMultiFrameResource(FRHITexture* Texture);
void BeginUpdateMultiFrameResource(FRHIUnorderedAccessView* UAV);
void EndUpdateMultiFrameResource(FRHIUnorderedAccessView* UAV);
// Uniform Buffer接口.
FLocalUniformBuffer BuildLocalUniformBuffer(const void* Contents, uint32 ContentsSize, const FRHIUniformBufferLayout& Layout);
template <typename TRHIShader>
void SetLocalShaderUniformBuffer(TRHIShader* Shader, uint32 BaseIndex, const FLocalUniformBuffer& UniformBuffer);
template <typename TShaderRHI>
void SetLocalShaderUniformBuffer(const TRefCountPtr<TShaderRHI>& Shader, uint32 BaseIndex, const FLocalUniformBuffer& UniformBuffer);
void SetShaderUniformBuffer(FRHIGraphicsShader* Shader, uint32 BaseIndex, FRHIUniformBuffer* UniformBuffer);
template <typename TShaderRHI>
FORCEINLINE void SetShaderUniformBuffer(const TRefCountPtr<TShaderRHI>& Shader, uint32 BaseIndex, FRHIUniformBuffer* UniformBuffer);
// 着色器参数.
void SetShaderParameter(FRHIGraphicsShader* Shader, uint32 BufferIndex, uint32 BaseIndex, uint32 NumBytes, const void* NewValue);
template <typename TShaderRHI>
void SetShaderParameter(const TRefCountPtr<TShaderRHI>& Shader, uint32 BufferIndex, uint32 BaseIndex, uint32 NumBytes, const void* NewValue);
void SetShaderTexture(FRHIGraphicsShader* Shader, uint32 TextureIndex, FRHITexture* Texture);
template <typename TShaderRHI>
void SetShaderTexture(const TRefCountPtr<TShaderRHI>& Shader, uint32 TextureIndex, FRHITexture* Texture);
void SetShaderResourceViewParameter(FRHIGraphicsShader* Shader, uint32 SamplerIndex, FRHIShaderResourceView* SRV);
template <typename TShaderRHI>
void SetShaderResourceViewParameter(const TRefCountPtr<TShaderRHI>& Shader, uint32 SamplerIndex, FRHIShaderResourceView* SRV);
void SetShaderSampler(FRHIGraphicsShader* Shader, uint32 SamplerIndex, FRHISamplerState* State);
template <typename TShaderRHI>
void SetShaderSampler(const TRefCountPtr<TShaderRHI>& Shader, uint32 SamplerIndex, FRHISamplerState* State);
void SetUAVParameter(FRHIPixelShader* Shader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV);
void SetUAVParameter(const TRefCountPtr<FRHIPixelShader>& Shader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV);
void SetBlendFactor(const FLinearColor& BlendFactor = FLinearColor::White);
// 图元绘制.
void DrawPrimitive(uint32 BaseVertexIndex, uint32 NumPrimitives, uint32 NumInstances);
void DrawIndexedPrimitive(FRHIIndexBuffer* IndexBuffer, int32 BaseVertexIndex, uint32 FirstInstance, uint32 NumVertices, uint32 StartIndex, uint32 NumPrimitives, uint32 NumInstances);
void DrawPrimitiveIndirect(FRHIVertexBuffer* ArgumentBuffer, uint32 ArgumentOffset);
void DrawIndexedIndirect(FRHIIndexBuffer* IndexBufferRHI, FRHIStructuredBuffer* ArgumentsBufferRHI, uint32 DrawArgumentsIndex, uint32 NumInstances);
void DrawIndexedPrimitiveIndirect(FRHIIndexBuffer* IndexBuffer, FRHIVertexBuffer* ArgumentsBuffer, uint32 ArgumentOffset);
// 设置数据.
void SetStreamSource(uint32 StreamIndex, FRHIVertexBuffer* VertexBuffer, uint32 Offset);
void SetStencilRef(uint32 StencilRef);
void SetViewport(float MinX, float MinY, float MinZ, float MaxX, float MaxY, float MaxZ);
void SetStereoViewport(float LeftMinX, float RightMinX, float LeftMinY, float RightMinY, float MinZ, float LeftMaxX, float RightMaxX, float LeftMaxY, float RightMaxY, float MaxZ);
void SetScissorRect(bool bEnable, uint32 MinX, uint32 MinY, uint32 MaxX, uint32 MaxY);
void ApplyCachedRenderTargets(FGraphicsPipelineStateInitializer& GraphicsPSOInit);
void SetGraphicsPipelineState(class FGraphicsPipelineState* GraphicsPipelineState, const FBoundShaderStateInput& ShaderInput, bool bApplyAdditionalState);
void SetDepthBounds(float MinDepth, float MaxDepth);
void SetShadingRate(EVRSShadingRate ShadingRate, EVRSRateCombiner Combiner);
void SetShadingRateImage(FRHITexture* RateImageTexture, EVRSRateCombiner Combiner);
// 拷贝纹理.
void CopyToResolveTarget(FRHITexture* SourceTextureRHI, FRHITexture* DestTextureRHI, const FResolveParams& ResolveParams);
void CopyTexture(FRHITexture* SourceTextureRHI, FRHITexture* DestTextureRHI, const FRHICopyTextureInfo& CopyInfo);
void ResummarizeHTile(FRHITexture2D* DepthTexture);
// 渲染查询.
void BeginRenderQuery(FRHIRenderQuery* RenderQuery)
void EndRenderQuery(FRHIRenderQuery* RenderQuery)
void CalibrateTimers(FRHITimestampCalibrationQuery* CalibrationQuery);
void PollOcclusionQueries()
/* LEGACY API */
void TransitionResource(FExclusiveDepthStencil DepthStencilMode, FRHITexture* DepthTexture);
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name);
void EndRenderPass();
void NextSubpass();
// 下面接口需要在立即模式的命令队列调用.
void BeginScene();
void EndScene();
void BeginDrawingViewport(FRHIViewport* Viewport, FRHITexture* RenderTargetRHI);
void EndDrawingViewport(FRHIViewport* Viewport, bool bPresent, bool bLockToVsync);
void BeginFrame();
void EndFrame();
void RHIInvalidateCachedState();
void DiscardRenderTargets(bool Depth, bool Stencil, uint32 ColorBitMask);
void CopyBufferRegion(FRHIVertexBuffer* DestBuffer, uint64 DstOffset, FRHIVertexBuffer* SourceBuffer, uint64 SrcOffset, uint64 NumBytes);
(......)
};
FRHICommandListBase定义了命令队列所需的基本数据(命令列表、设备上下文)和接口(命令的刷新、等待、入队、派发等,内存分配)。FRHIComputeCommandList定义了计算着色器相关的接口、GPU资源状态转换和着色器部分参数的设置。FRHICommandList定义了普通渲染管线的接口,包含VS、PS、GS的绑定,图元绘制,更多着色器参数的设置和资源状态转换,资源创建、更新和等待等等。
FRHICommandList还有数个子类,定义如下:
// 立即模式的命令队列.
class FRHICommandListImmediate : public FRHICommandList
{
// 命令匿名函数.
template <typename LAMBDA>
struct TRHILambdaCommand final : public FRHICommandBase
{
LAMBDA Lambda;
void ExecuteAndDestruct(FRHICommandListBase& CmdList, FRHICommandListDebugContext&) override final;
};
FRHICommandListImmediate();
~FRHICommandListImmediate();
public:
// 立即刷新命令.
void ImmediateFlush(EImmediateFlushType::Type FlushType);
// 阻塞RHI线程.
bool StallRHIThread();
// 取消阻塞RHI线程.
void UnStallRHIThread();
// 是否阻塞中.
static bool IsStalled();
void SetCurrentStat(TStatId Stat);
static FGraphEventRef RenderThreadTaskFence();
static FGraphEventArray& GetRenderThreadTaskArray();
static void WaitOnRenderThreadTaskFence(FGraphEventRef& Fence);
static bool AnyRenderThreadTasksOutstanding();
FGraphEventRef RHIThreadFence(bool bSetLockFence = false);
// 将给定的异步计算命令列表按当前立即命令列表的顺序排列.
void QueueAsyncCompute(FRHIComputeCommandList& RHIComputeCmdList);
bool IsBottomOfPipe();
bool IsTopOfPipe();
template <typename LAMBDA>
void EnqueueLambda(LAMBDA&& Lambda);
// 资源创建.
FSamplerStateRHIRef CreateSamplerState(const FSamplerStateInitializerRHI& Initializer)
FRasterizerStateRHIRef CreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer)
FDepthStencilStateRHIRef CreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer)
FBlendStateRHIRef CreateBlendState(const FBlendStateInitializerRHI& Initializer)
FPixelShaderRHIRef CreatePixelShader(TArrayView<const uint8> Code, const FSHAHash& Hash)
FVertexShaderRHIRef CreateVertexShader(TArrayView<const uint8> Code, const FSHAHash& Hash)
FHullShaderRHIRef CreateHullShader(TArrayView<const uint8> Code, const FSHAHash& Hash)
FDomainShaderRHIRef CreateDomainShader(TArrayView<const uint8> Code, const FSHAHash& Hash)
FGeometryShaderRHIRef CreateGeometryShader(TArrayView<const uint8> Code, const FSHAHash& Hash)
FComputeShaderRHIRef CreateComputeShader(TArrayView<const uint8> Code, const FSHAHash& Hash)
FComputeFenceRHIRef CreateComputeFence(const FName& Name)
FGPUFenceRHIRef CreateGPUFence(const FName& Name)
FStagingBufferRHIRef CreateStagingBuffer()
FBoundShaderStateRHIRef CreateBoundShaderState(...)
FGraphicsPipelineStateRHIRef CreateGraphicsPipelineState(const FGraphicsPipelineStateInitializer& Initializer)
TRefCountPtr<FRHIComputePipelineState> CreateComputePipelineState(FRHIComputeShader* ComputeShader)
FUniformBufferRHIRef CreateUniformBuffer(...)
FIndexBufferRHIRef CreateAndLockIndexBuffer(uint32 Stride, uint32 Size, EBufferUsageFlags InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer)
FIndexBufferRHIRef CreateAndLockIndexBuffer(uint32 Stride, uint32 Size, uint32 InUsage, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer)
// 顶点/索引接口.
void* LockIndexBuffer(FRHIIndexBuffer* IndexBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
void UnlockIndexBuffer(FRHIIndexBuffer* IndexBuffer);
void* LockStagingBuffer(FRHIStagingBuffer* StagingBuffer, FRHIGPUFence* Fence, uint32 Offset, uint32 SizeRHI);
void UnlockStagingBuffer(FRHIStagingBuffer* StagingBuffer);
FVertexBufferRHIRef CreateAndLockVertexBuffer(uint32 Size, EBufferUsageFlags InUsage, ...);
FVertexBufferRHIRef CreateAndLockVertexBuffer(uint32 Size, uint32 InUsage, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer);
void* LockVertexBuffer(FRHIVertexBuffer* VertexBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
void UnlockVertexBuffer(FRHIVertexBuffer* VertexBuffer);
void CopyVertexBuffer(FRHIVertexBuffer* SourceBuffer, FRHIVertexBuffer* DestBuffer);
void* LockStructuredBuffer(FRHIStructuredBuffer* StructuredBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
void UnlockStructuredBuffer(FRHIStructuredBuffer* StructuredBuffer);
// UAV/SRV创建.
FUnorderedAccessViewRHIRef CreateUnorderedAccessView(FRHIStructuredBuffer* StructuredBuffer, bool bUseUAVCounter, bool bAppendBuffer)
FUnorderedAccessViewRHIRef CreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel)
FUnorderedAccessViewRHIRef CreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel, uint8 Format)
FUnorderedAccessViewRHIRef CreateUnorderedAccessView(FRHIVertexBuffer* VertexBuffer, uint8 Format)
FUnorderedAccessViewRHIRef CreateUnorderedAccessView(FRHIIndexBuffer* IndexBuffer, uint8 Format)
FShaderResourceViewRHIRef CreateShaderResourceView(FRHIStructuredBuffer* StructuredBuffer)
FShaderResourceViewRHIRef CreateShaderResourceView(FRHIVertexBuffer* VertexBuffer, uint32 Stride, uint8 Format)
FShaderResourceViewRHIRef CreateShaderResourceView(const FShaderResourceViewInitializer& Initializer)
FShaderResourceViewRHIRef CreateShaderResourceView(FRHIIndexBuffer* Buffer)
uint64 CalcTexture2DPlatformSize(...);
uint64 CalcTexture3DPlatformSize(...);
uint64 CalcTextureCubePlatformSize(...);
// 纹理操作.
void GetTextureMemoryStats(FTextureMemoryStats& OutStats);
bool GetTextureMemoryVisualizeData(...);
void CopySharedMips(FRHITexture2D* DestTexture2D, FRHITexture2D* SrcTexture2D);
void TransferTexture(FRHITexture2D* Texture, FIntRect Rect, uint32 SrcGPUIndex, uint32 DestGPUIndex, bool PullData);
void TransferTextures(const TArrayView<const FTransferTextureParams> Params);
void GetResourceInfo(FRHITexture* Ref, FRHIResourceInfo& OutInfo);
FShaderResourceViewRHIRef CreateShaderResourceView(FRHITexture* Texture, const FRHITextureSRVCreateInfo& CreateInfo);
FShaderResourceViewRHIRef CreateShaderResourceView(FRHITexture* Texture, uint8 MipLevel);
FShaderResourceViewRHIRef CreateShaderResourceView(FRHITexture* Texture, uint8 MipLevel, uint8 NumMipLevels, uint8 Format);
FShaderResourceViewRHIRef CreateShaderResourceViewWriteMask(FRHITexture2D* Texture2DRHI);
FShaderResourceViewRHIRef CreateShaderResourceViewFMask(FRHITexture2D* Texture2DRHI);
uint32 ComputeMemorySize(FRHITexture* TextureRHI);
FTexture2DRHIRef AsyncReallocateTexture2D(...);
ETextureReallocationStatus FinalizeAsyncReallocateTexture2D(FRHITexture2D* Texture2D, bool bBlockUntilCompleted);
ETextureReallocationStatus CancelAsyncReallocateTexture2D(FRHITexture2D* Texture2D, bool bBlockUntilCompleted);
void* LockTexture2D(...);
void UnlockTexture2D(FRHITexture2D* Texture, uint32 MipIndex, bool bLockWithinMiptail, bool bFlushRHIThread = true);
void* LockTexture2DArray(...);
void UnlockTexture2DArray(FRHITexture2DArray* Texture, uint32 TextureIndex, uint32 MipIndex, bool bLockWithinMiptail);
void UpdateTexture2D(...);
void UpdateFromBufferTexture2D(...);
FUpdateTexture3DData BeginUpdateTexture3D(...);
void EndUpdateTexture3D(FUpdateTexture3DData& UpdateData);
void EndMultiUpdateTexture3D(TArray<FUpdateTexture3DData>& UpdateDataArray);
void UpdateTexture3D(...);
void* LockTextureCubeFace(...);
void UnlockTextureCubeFace(FRHITextureCube* Texture, ...);
// 读取纹理表面数据.
void ReadSurfaceData(FRHITexture* Texture, ...);
void ReadSurfaceData(FRHITexture* Texture, ...);
void MapStagingSurface(FRHITexture* Texture, void*& OutData, int32& OutWidth, int32& OutHeight);
void MapStagingSurface(FRHITexture* Texture, ...);
void UnmapStagingSurface(FRHITexture* Texture);
void ReadSurfaceFloatData(FRHITexture* Texture, ...);
void ReadSurfaceFloatData(FRHITexture* Texture, ...);
void Read3DSurfaceFloatData(FRHITexture* Texture,...);
// 渲染线程的资源状态转换.
void AcquireTransientResource_RenderThread(FRHITexture* Texture);
void DiscardTransientResource_RenderThread(FRHITexture* Texture);
void AcquireTransientResource_RenderThread(FRHIVertexBuffer* Buffer);
void DiscardTransientResource_RenderThread(FRHIVertexBuffer* Buffer);
void AcquireTransientResource_RenderThread(FRHIStructuredBuffer* Buffer);
void DiscardTransientResource_RenderThread(FRHIStructuredBuffer* Buffer);
// 获取渲染查询结果.
bool GetRenderQueryResult(FRHIRenderQuery* RenderQuery, ...);
void PollRenderQueryResults();
// 视口
FViewportRHIRef CreateViewport(void* WindowHandle, ...);
uint32 GetViewportNextPresentGPUIndex(FRHIViewport* Viewport);
FTexture2DRHIRef GetViewportBackBuffer(FRHIViewport* Viewport);
void AdvanceFrameForGetViewportBackBuffer(FRHIViewport* Viewport);
void ResizeViewport(FRHIViewport* Viewport, ...);
void AcquireThreadOwnership();
void ReleaseThreadOwnership();
// 提交命令并刷新到GPU.
void SubmitCommandsAndFlushGPU();
// 执行命令队列.
void ExecuteCommandList(FRHICommandList* CmdList);
// 更新资源.
void UpdateTextureReference(FRHITextureReference* TextureRef, FRHITexture* NewTexture);
void UpdateRHIResources(FRHIResourceUpdateInfo* UpdateInfos, int32 Num, bool bNeedReleaseRefs);
// 刷新资源.
void FlushResources();
// 帧更新.
void Tick(float DeltaTime);
// 阻塞直到GPU空闲.
void BlockUntilGPUIdle();
// 暂停/开启渲染.
void SuspendRendering();
void ResumeRendering();
bool IsRenderingSuspended();
// 压缩/解压数据.
bool EnqueueDecompress(uint8_t* SrcBuffer, uint8_t* DestBuffer, int CompressedSize, void* ErrorCodeBuffer);
bool EnqueueCompress(uint8_t* SrcBuffer, uint8_t* DestBuffer, int UnCompressedSize, void* ErrorCodeBuffer);
// 其它接口.
bool GetAvailableResolutions(FScreenResolutionArray& Resolutions, bool bIgnoreRefreshRate);
void GetSupportedResolution(uint32& Width, uint32& Height);
void VirtualTextureSetFirstMipInMemory(FRHITexture2D* Texture, uint32 FirstMip);
void VirtualTextureSetFirstMipVisible(FRHITexture2D* Texture, uint32 FirstMip);
// 获取原生的数据.
void* GetNativeDevice();
void* GetNativeInstance();
// 获取立即模式的命令上下文.
IRHICommandContext* GetDefaultContext();
// 获取命令上下文容器.
IRHICommandContextContainer* GetCommandContextContainer(int32 Index, int32 Num);
uint32 GetGPUFrameCycles();
};
// 在RHI实现中标记命令列表的递归使用的类型定义.
class FRHICommandList_RecursiveHazardous : public FRHICommandList
{
public:
FRHICommandList_RecursiveHazardous(IRHICommandContext *Context, FRHIGPUMask InGPUMask = FRHIGPUMask::All());
};
// RHI内部使用的工具类,以更安全地使用FRHICommandList_RecursiveHazardous
template <typename ContextType>
class TRHICommandList_RecursiveHazardous : public FRHICommandList_RecursiveHazardous
{
template <typename LAMBDA>
struct TRHILambdaCommand final : public FRHICommandBase
{
LAMBDA Lambda;
TRHILambdaCommand(LAMBDA&& InLambda);
void ExecuteAndDestruct(FRHICommandListBase& CmdList, FRHICommandListDebugContext&) override final;
};
public:
TRHICommandList_RecursiveHazardous(ContextType *Context, FRHIGPUMask GPUMask = FRHIGPUMask::All());
template <typename LAMBDA>
void RunOnContext(LAMBDA&& Lambda);
};
FRHICommandListImmediate封装了立即模式的图形API接口,在UE渲染体系中被应用得非常广泛。它额外定义了资源的操作、创建、更新、读取和状态转换接口,也增加了线程同步和GPU同步的接口。
下面对FRHICommandList核心继承体系来个UML图总结一下:
10.3 RHIContext, DynamicRHI
本章将阐述RHI Context、DynamicRHI的概念、类型和关联。
10.3.1 IRHICommandContext
IRHICommandContext是RHI的命令上下文接口类,定义了一组图形API相关的操作。在可以并行处理命令列表的平台上,它是一个单独的对象。它和相关继承类型定义如下:
// Engine\Source\Runtime\RHI\Public\RHIContext.h
// 能够执行计算工作的上下文。可以在gfx管道上执行异步或计算.
class IRHIComputeContext
{
public:
virtual ~IRHIComputeContext();
// 设置/派发计算着色器.
virtual void RHISetComputeShader(FRHIComputeShader* ComputeShader) = 0;
virtual void RHISetComputePipelineState(FRHIComputePipelineState* ComputePipelineState);
virtual void RHIDispatchComputeShader(uint32 ThreadGroupCountX, uint32 ThreadGroupCountY, uint32 ThreadGroupCountZ) = 0;
virtual void RHIDispatchIndirectComputeShader(FRHIVertexBuffer* ArgumentBuffer, uint32 ArgumentOffset) = 0;
virtual void RHISetAsyncComputeBudget(EAsyncComputeBudget Budget) {}
// 转换资源.
virtual void RHIBeginTransitions(TArrayView<const FRHITransition*> Transitions) = 0;
virtual void RHIEndTransitions(TArrayView<const FRHITransition*> Transitions) = 0;
// UAV
virtual void RHIClearUAVFloat(FRHIUnorderedAccessView* UnorderedAccessViewRHI, const FVector4& Values) = 0;
virtual void RHIClearUAVUint(FRHIUnorderedAccessView* UnorderedAccessViewRHI, const FUintVector4& Values) = 0;
virtual void RHIBeginUAVOverlap() {}
virtual void RHIEndUAVOverlap() {}
virtual void RHIBeginUAVOverlap(TArrayView<FRHIUnorderedAccessView* const> UAVs) {}
virtual void RHIEndUAVOverlap(TArrayView<FRHIUnorderedAccessView* const> UAVs) {}
// 着色器参数.
virtual void RHISetShaderTexture(FRHIComputeShader* PixelShader, uint32 TextureIndex, FRHITexture* NewTexture) = 0;
virtual void RHISetShaderSampler(FRHIComputeShader* ComputeShader, uint32 SamplerIndex, FRHISamplerState* NewState) = 0;
virtual void RHISetUAVParameter(FRHIComputeShader* ComputeShader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV) = 0;
virtual void RHISetUAVParameter(FRHIComputeShader* ComputeShader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV, uint32 InitialCount) = 0;
virtual void RHISetShaderResourceViewParameter(FRHIComputeShader* ComputeShader, uint32 SamplerIndex, FRHIShaderResourceView* SRV) = 0;
virtual void RHISetShaderUniformBuffer(FRHIComputeShader* ComputeShader, uint32 BufferIndex, FRHIUniformBuffer* Buffer) = 0;
virtual void RHISetShaderParameter(FRHIComputeShader* ComputeShader, uint32 BufferIndex, uint32 BaseIndex, uint32 NumBytes, const void* NewValue) = 0;
virtual void RHISetGlobalUniformBuffers(const FUniformBufferStaticBindings& InUniformBuffers);
// 压入/弹出事件.
virtual void RHIPushEvent(const TCHAR* Name, FColor Color) = 0;
virtual void RHIPopEvent() = 0;
// 其它接口.
virtual void RHISubmitCommandsHint() = 0;
virtual void RHIInvalidateCachedState() {}
virtual void RHICopyToStagingBuffer(FRHIVertexBuffer* SourceBufferRHI, FRHIStagingBuffer* DestinationStagingBufferRHI, uint32 InOffset, uint32 InNumBytes);
virtual void RHIWriteGPUFence(FRHIGPUFence* FenceRHI);
virtual void RHISetGPUMask(FRHIGPUMask GPUMask);
// 加速结构.
virtual void RHIBuildAccelerationStructure(FRHIRayTracingGeometry* Geometry);
virtual void RHIBuildAccelerationStructures(const TArrayView<const FAccelerationStructureBuildParams> Params);
virtual void RHIBuildAccelerationStructure(FRHIRayTracingScene* Scene);
// 获取计算上下文.
inline IRHIComputeContext& GetLowestLevelContext() { return *this; }
inline IRHIComputeContext& GetHighestLevelContext() { return *this; }
};
// 命令上下文.
class IRHICommandContext : public IRHIComputeContext
{
public:
virtual ~IRHICommandContext();
// 派发计算.
virtual void RHIDispatchComputeShader(uint32 ThreadGroupCountX, uint32 ThreadGroupCountY, uint32 ThreadGroupCountZ) = 0;
virtual void RHIDispatchIndirectComputeShader(FRHIVertexBuffer* ArgumentBuffer, uint32 ArgumentOffset) = 0;
// 渲染查询.
virtual void RHIBeginRenderQuery(FRHIRenderQuery* RenderQuery) = 0;
virtual void RHIEndRenderQuery(FRHIRenderQuery* RenderQuery) = 0;
virtual void RHIPollOcclusionQueries();
// 开启/结束接口.
virtual void RHIBeginDrawingViewport(FRHIViewport* Viewport, FRHITexture* RenderTargetRHI) = 0;
virtual void RHIEndDrawingViewport(FRHIViewport* Viewport, bool bPresent, bool bLockToVsync) = 0;
virtual void RHIBeginFrame() = 0;
virtual void RHIEndFrame() = 0;
virtual void RHIBeginScene() = 0;
virtual void RHIEndScene() = 0;
virtual void RHIBeginUpdateMultiFrameResource(FRHITexture* Texture);
virtual void RHIEndUpdateMultiFrameResource(FRHITexture* Texture);
virtual void RHIBeginUpdateMultiFrameResource(FRHIUnorderedAccessView* UAV);
virtual void RHIEndUpdateMultiFrameResource(FRHIUnorderedAccessView* UAV);
// 设置数据.
virtual void RHISetStreamSource(uint32 StreamIndex, FRHIVertexBuffer* VertexBuffer, uint32 Offset) = 0;
virtual void RHISetViewport(float MinX, float MinY, float MinZ, float MaxX, float MaxY, float MaxZ) = 0;
virtual void RHISetStereoViewport(...);
virtual void RHISetScissorRect(bool bEnable, uint32 MinX, uint32 MinY, uint32 MaxX, uint32 MaxY) = 0;
virtual void RHISetGraphicsPipelineState(FRHIGraphicsPipelineState* GraphicsState, bool bApplyAdditionalState) = 0;
// 设置着色器参数.
virtual void RHISetShaderTexture(FRHIGraphicsShader* Shader, uint32 TextureIndex, FRHITexture* NewTexture) = 0;
virtual void RHISetShaderTexture(FRHIComputeShader* PixelShader, uint32 TextureIndex, FRHITexture* NewTexture) = 0;
virtual void RHISetShaderSampler(FRHIComputeShader* ComputeShader, uint32 SamplerIndex, FRHISamplerState* NewState) = 0;
virtual void RHISetShaderSampler(FRHIGraphicsShader* Shader, uint32 SamplerIndex, FRHISamplerState* NewState) = 0;
virtual void RHISetUAVParameter(FRHIPixelShader* PixelShader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV) = 0;
virtual void RHISetUAVParameter(FRHIComputeShader* ComputeShader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV) = 0;
virtual void RHISetUAVParameter(FRHIComputeShader* ComputeShader, uint32 UAVIndex, FRHIUnorderedAccessView* UAV, uint32 InitialCount) = 0;
virtual void RHISetShaderResourceViewParameter(FRHIComputeShader* ComputeShader, uint32 SamplerIndex, FRHIShaderResourceView* SRV) = 0;
virtual void RHISetShaderResourceViewParameter(FRHIGraphicsShader* Shader, uint32 SamplerIndex, FRHIShaderResourceView* SRV) = 0;
virtual void RHISetShaderUniformBuffer(FRHIGraphicsShader* Shader, uint32 BufferIndex, FRHIUniformBuffer* Buffer) = 0;
virtual void RHISetShaderUniformBuffer(FRHIComputeShader* ComputeShader, uint32 BufferIndex, FRHIUniformBuffer* Buffer) = 0;
virtual void RHISetShaderParameter(FRHIGraphicsShader* Shader, uint32 BufferIndex, uint32 BaseIndex, uint32 NumBytes, const void* NewValue) = 0;
virtual void RHISetShaderParameter(FRHIComputeShader* ComputeShader, uint32 BufferIndex, uint32 BaseIndex, uint32 NumBytes, const void* NewValue) = 0;
virtual void RHISetStencilRef(uint32 StencilRef) {}
virtual void RHISetBlendFactor(const FLinearColor& BlendFactor) {}
// 绘制图元.
virtual void RHIDrawPrimitive(uint32 BaseVertexIndex, uint32 NumPrimitives, uint32 NumInstances) = 0;
virtual void RHIDrawPrimitiveIndirect(FRHIVertexBuffer* ArgumentBuffer, uint32 ArgumentOffset) = 0;
virtual void RHIDrawIndexedIndirect(FRHIIndexBuffer* IndexBufferRHI, FRHIStructuredBuffer* ArgumentsBufferRHI, int32 DrawArgumentsIndex, uint32 NumInstances) = 0;
virtual void RHIDrawIndexedPrimitive(FRHIIndexBuffer* IndexBuffer, int32 BaseVertexIndex, uint32 FirstInstance, uint32 NumVertices, uint32 StartIndex, uint32 NumPrimitives, uint32 NumInstances) = 0;
virtual void RHIDrawIndexedPrimitiveIndirect(FRHIIndexBuffer* IndexBuffer, FRHIVertexBuffer* ArgumentBuffer, uint32 ArgumentOffset) = 0;
// 其它接口
virtual void RHISetDepthBounds(float MinDepth, float MaxDepth) = 0;
virtual void RHISetShadingRate(EVRSShadingRate ShadingRate, EVRSRateCombiner Combiner);
virtual void RHISetShadingRateImage(FRHITexture* RateImageTexture, EVRSRateCombiner Combiner);
virtual void RHISetMultipleViewports(uint32 Count, const FViewportBounds* Data) = 0;
virtual void RHICopyToResolveTarget(FRHITexture* SourceTexture, FRHITexture* DestTexture, const FResolveParams& ResolveParams) = 0;
virtual void RHIResummarizeHTile(FRHITexture2D* DepthTexture);
virtual void RHICalibrateTimers();
virtual void RHICalibrateTimers(FRHITimestampCalibrationQuery* CalibrationQuery);
virtual void RHIDiscardRenderTargets(bool Depth, bool Stencil, uint32 ColorBitMask) {}
// 纹理
virtual void RHIUpdateTextureReference(FRHITextureReference* TextureRef, FRHITexture* NewTexture) = 0;
virtual void RHICopyTexture(FRHITexture* SourceTexture, FRHITexture* DestTexture, const FRHICopyTextureInfo& CopyInfo);
virtual void RHICopyBufferRegion(FRHIVertexBuffer* DestBuffer, ...);
// Pass相关.
virtual void RHIBeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* InName) = 0;
virtual void RHIEndRenderPass() = 0;
virtual void RHINextSubpass();
// 光线追踪.
virtual void RHIClearRayTracingBindings(FRHIRayTracingScene* Scene);
virtual void RHIBuildAccelerationStructures(const TArrayView<const FAccelerationStructureBuildParams> Params);
virtual void RHIBuildAccelerationStructure(FRHIRayTracingGeometry* Geometry) final override;
virtual void RHIBuildAccelerationStructure(FRHIRayTracingScene* Scene);
virtual void RHIRayTraceOcclusion(FRHIRayTracingScene* Scene, ...);
virtual void RHIRayTraceIntersection(FRHIRayTracingScene* Scene, ...);
virtual void RHIRayTraceDispatch(FRHIRayTracingPipelineState* RayTracingPipelineState, ...);
virtual void RHISetRayTracingHitGroups(FRHIRayTracingScene* Scene, ...);
virtual void RHISetRayTracingHitGroup(FRHIRayTracingScene* Scene, ...);
virtual void RHISetRayTracingCallableShader(FRHIRayTracingScene* Scene, ...);
virtual void RHISetRayTracingMissShader(FRHIRayTracingScene* Scene, ...);
(......)
protected:
// 渲染Pass信息.
FRHIRenderPassInfo RenderPassInfo;
};
以上可知,IRHICommandContext的接口和FRHICommandList的接口高度相似且重叠。IRHICommandContext还有许多子类:
-
IRHICommandContextPSOFallback:不支持真正的图形管道的RHI命令上下文。
- FNullDynamicRHI:空实现的动态绑定RHI。
- FOpenGLDynamicRHI:OpenGL的动态RHI。
- FD3D11DynamicRHI:D3D11的动态RHI。
-
FMetalRHICommandContext:Metal平台的命令上下文。
-
FD3D12CommandContextBase:D3D12的命令上下文。
-
FVulkanCommandListContext:Vulkan平台的命令队列上下文。
-
FEmptyDynamicRHI:动态绑定的RHI实现的接口。
-
FValidationContext:校验上下文。
上述的子类中,平台相关的部分子类还继承了FDynamicRHI。IRHICommandContextPSOFallback比较特殊,它的子类都是不支持并行绘制的图形API(OpenGL、D3D11)。IRHICommandContextPSOFallback定义如下:
class IRHICommandContextPSOFallback : public IRHICommandContext
{
public:
// 设置渲染状态.
virtual void RHISetBoundShaderState(FRHIBoundShaderState* BoundShaderState) = 0;
virtual void RHISetDepthStencilState(FRHIDepthStencilState* NewState, uint32 StencilRef) = 0;
virtual void RHISetRasterizerState(FRHIRasterizerState* NewState) = 0;
virtual void RHISetBlendState(FRHIBlendState* NewState, const FLinearColor& BlendFactor) = 0;
virtual void RHIEnableDepthBoundsTest(bool bEnable) = 0;
// 管线状态.
virtual void RHISetGraphicsPipelineState(FRHIGraphicsPipelineState* GraphicsState, bool bApplyAdditionalState) override;
};
IRHICommandContext的核心继承UML图如下:
10.3.2 IRHICommandContextContainer
IRHICommandContextContainer就是包含了IRHICommandContext对象的类型,它和核心继承子类的定义如下:
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
class IRHICommandContextContainer
{
public:
virtual ~IRHICommandContextContainer();
// 获取IRHICommandContext实例.
virtual IRHICommandContext* GetContext();
virtual void SubmitAndFreeContextContainer(int32 Index, int32 Num);
virtual void FinishContext();
};
// Engine\Source\Runtime\Apple\MetalRHI\Private\MetalContext.cpp
class FMetalCommandContextContainer : public IRHICommandContextContainer
{
// FMetalRHICommandContext列表的下一个.
FMetalRHICommandContext* CmdContext;
int32 Index;
int32 Num;
public:
void* operator new(size_t Size);
void operator delete(void *RawMemory);
FMetalCommandContextContainer(int32 InIndex, int32 InNum);
virtual ~FMetalCommandContextContainer() override final;
virtual IRHICommandContext* GetContext() override final;
virtual void FinishContext() override final;
// 提交并释放自己.
virtual void SubmitAndFreeContextContainer(int32 NewIndex, int32 NewNum) override final;
};
// FMetalCommandContextContainer分配器.
static TLockFreeFixedSizeAllocator<sizeof(FMetalCommandContextContainer), PLATFORM_CACHE_LINE_SIZE, FThreadSafeCounter> FMetalCommandContextContainerAllocator;
// Engine\Source\Runtime\D3D12RHI\Private\D3D12CommandContext.cpp
class FD3D12CommandContextContainer : public IRHICommandContextContainer
{
// 适配器.
FD3D12Adapter* Adapter;
// 命令上下文.
FD3D12CommandContext* CmdContext;
// 上下文重定向器.
FD3D12CommandContextRedirector* CmdContextRedirector;
FRHIGPUMask GPUMask;
// 命令队列列表.
TArray<FD3D12CommandListHandle> CommandLists;
public:
void* operator new(size_t Size);
void operator delete(void* RawMemory);
FD3D12CommandContextContainer(FD3D12Adapter* InAdapter, FRHIGPUMask InGPUMask);
virtual ~FD3D12CommandContextContainer() override
virtual IRHICommandContext* GetContext() override;
virtual void FinishContext() override;
virtual void SubmitAndFreeContextContainer(int32 Index, int32 Num) override;
};
// Engine\Source\Runtime\VulkanRHI\Private\VulkanContext.h
struct FVulkanCommandContextContainer : public IRHICommandContextContainer, public VulkanRHI::FDeviceChild
{
// 命令队列上下文.
FVulkanCommandListContext* CmdContext;
FVulkanCommandContextContainer(FVulkanDevice* InDevice);
virtual IRHICommandContext* GetContext() override final;
virtual void FinishContext() override final;
virtual void SubmitAndFreeContextContainer(int32 Index, int32 Num) override final;
void* operator new(size_t Size);
void operator delete(void* RawMemory);
};
IRHICommandContextContainer相当于存储了一个或一组命令上下文的容器,以支持并行化地提交命令队列,只在D3D12、Metal、Vulkan等现代图形API中有实现。完整继承UML图如下:
10.3.3 FDynamicRHI
FDynamicRHI是由动态绑定的RHI实现的接口,它定义的接口和CommandList、CommandContext比较相似,部分如下:
class RHI_API FDynamicRHI
{
public:
virtual ~FDynamicRHI() {}
virtual void Init() = 0;
virtual void PostInit() {}
virtual void Shutdown() = 0;
void InitPixelFormatInfo(const TArray<uint32>& PixelFormatBlockBytesIn);
// ---- RHI接口 ----
// 下列接口要求FlushType: Thread safe
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) = 0;
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) = 0;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) = 0;
virtual FBlendStateRHIRef RHICreateBlendState(const FBlendStateInitializerRHI& Initializer) = 0;
// 下列接口要求FlushType: Wait RHI Thread
virtual FVertexDeclarationRHIRef RHICreateVertexDeclaration(const FVertexDeclarationElementList& Elements) = 0;
virtual FPixelShaderRHIRef RHICreatePixelShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FVertexShaderRHIRef RHICreateVertexShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FHullShaderRHIRef RHICreateHullShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FDomainShaderRHIRef RHICreateDomainShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FGeometryShaderRHIRef RHICreateGeometryShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
virtual FComputeShaderRHIRef RHICreateComputeShader(TArrayView<const uint8> Code, const FSHAHash& Hash) = 0;
// FlushType: Must be Thread-Safe.
virtual FRenderQueryPoolRHIRef RHICreateRenderQueryPool(ERenderQueryType QueryType, uint32 NumQueries = UINT32_MAX);
inline FComputeFenceRHIRef RHICreateComputeFence(const FName& Name);
virtual FGPUFenceRHIRef RHICreateGPUFence(const FName &Name);
virtual void RHICreateTransition(FRHITransition* Transition, ERHIPipeline SrcPipelines, ERHIPipeline DstPipelines, ERHICreateTransitionFlags CreateFlags, TArrayView<const FRHITransitionInfo> Infos);
virtual void RHIReleaseTransition(FRHITransition* Transition);
// FlushType: Thread safe.
virtual FStagingBufferRHIRef RHICreateStagingBuffer();
virtual void* RHILockStagingBuffer(FRHIStagingBuffer* StagingBuffer, FRHIGPUFence* Fence, uint32 Offset, uint32 SizeRHI);
virtual void RHIUnlockStagingBuffer(FRHIStagingBuffer* StagingBuffer);
// FlushType: Thread safe, but varies depending on the RHI
virtual FBoundShaderStateRHIRef RHICreateBoundShaderState(FRHIVertexDeclaration* VertexDeclaration, FRHIVertexShader* VertexShader, FRHIHullShader* HullShader, FRHIDomainShader* DomainShader, FRHIPixelShader* PixelShader, FRHIGeometryShader* GeometryShader) = 0;
// FlushType: Thread safe
virtual FGraphicsPipelineStateRHIRef RHICreateGraphicsPipelineState(const FGraphicsPipelineStateInitializer& Initializer);
// FlushType: Thread safe, but varies depending on the RHI
virtual FUniformBufferRHIRef RHICreateUniformBuffer(const void* Contents, const FRHIUniformBufferLayout& Layout, EUniformBufferUsage Usage, EUniformBufferValidation Validation) = 0;
virtual void RHIUpdateUniformBuffer(FRHIUniformBuffer* UniformBufferRHI, const void* Contents) = 0;
// FlushType: Wait RHI Thread
virtual FIndexBufferRHIRef RHICreateIndexBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
virtual void* RHILockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer, uint32 Offset, uint32 Size, EResourceLockMode LockMode);
virtual void RHIUnlockIndexBuffer(FRHICommandListImmediate& RHICmdList, FRHIIndexBuffer* IndexBuffer);
virtual void RHITransferIndexBufferUnderlyingResource(FRHIIndexBuffer* DestIndexBuffer, FRHIIndexBuffer* SrcIndexBuffer);
// FlushType: Wait RHI Thread
virtual FVertexBufferRHIRef RHICreateVertexBuffer(uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
// FlushType: Flush RHI Thread
virtual void* RHILockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
virtual void RHIUnlockVertexBuffer(FRHICommandListImmediate& RHICmdList, FRHIVertexBuffer* VertexBuffer);
// FlushType: Flush Immediate (seems dangerous)
virtual void RHICopyVertexBuffer(FRHIVertexBuffer* SourceBuffer, FRHIVertexBuffer* DestBuffer) = 0;
virtual void RHITransferVertexBufferUnderlyingResource(FRHIVertexBuffer* DestVertexBuffer, FRHIVertexBuffer* SrcVertexBuffer);
// FlushType: Wait RHI Thread
virtual FStructuredBufferRHIRef RHICreateStructuredBuffer(uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo) = 0;
// FlushType: Flush RHI Thread
virtual void* RHILockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer, uint32 Offset, uint32 SizeRHI, EResourceLockMode LockMode);
virtual void RHIUnlockStructuredBuffer(FRHICommandListImmediate& RHICmdList, FRHIStructuredBuffer* StructuredBuffer);
// FlushType: Wait RHI Thread
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHIStructuredBuffer* StructuredBuffer, bool bUseUAVCounter, bool bAppendBuffer) = 0;
// FlushType: Wait RHI Thread
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel) = 0;
// FlushType: Wait RHI Thread
virtual FUnorderedAccessViewRHIRef RHICreateUnorderedAccessView(FRHITexture* Texture, uint32 MipLevel, uint8 Format);
(......)
// RHI帧更新,须从主线程调用,FlushType: Thread safe
virtual void RHITick(float DeltaTime) = 0;
// 阻塞CPU直到GPU执行完成变成空闲. FlushType: Flush Immediate (seems wrong)
virtual void RHIBlockUntilGPUIdle() = 0;
// 开始当前帧,并确保GPU正在积极地工作 FlushType: Flush Immediate (copied from RHIBlockUntilGPUIdle)
virtual void RHISubmitCommandsAndFlushGPU() {};
// 通知RHI准备暂停它.
virtual void RHIBeginSuspendRendering() {};
// 暂停RHI渲染并将控制权交给系统的操作, FlushType: Thread safe
virtual void RHISuspendRendering() {};
// 继续RHI渲染, FlushType: Thread safe
virtual void RHIResumeRendering() {};
// FlushType: Flush Immediate
virtual bool RHIIsRenderingSuspended() { return false; };
// FlushType: called from render thread when RHI thread is flushed
// 仅在FRHIResource::FlushPendingDeletes内的延迟删除之前每帧调用.
virtual void RHIPerFrameRHIFlushComplete();
// 执行命令队列, FlushType: Wait RHI Thread
virtual void RHIExecuteCommandList(FRHICommandList* CmdList) = 0;
// FlushType: Flush RHI Thread
virtual void* RHIGetNativeDevice() = 0;
// FlushType: Flush RHI Thread
virtual void* RHIGetNativeInstance() = 0;
// 获取命令上下文. FlushType: Thread safe
virtual IRHICommandContext* RHIGetDefaultContext() = 0;
// 获取计算上下文. FlushType: Thread safe
virtual IRHIComputeContext* RHIGetDefaultAsyncComputeContext();
// FlushType: Thread safe
virtual class IRHICommandContextContainer* RHIGetCommandContextContainer(int32 Index, int32 Num) = 0;
// 直接由渲染线程调用的接口, 以优化RHI调用.
virtual FVertexBufferRHIRef CreateAndLockVertexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer);
virtual FIndexBufferRHIRef CreateAndLockIndexBuffer_RenderThread(class FRHICommandListImmediate& RHICmdList, uint32 Stride, uint32 Size, uint32 InUsage, ERHIAccess InResourceState, FRHIResourceCreateInfo& CreateInfo, void*& OutDataBuffer);
(......)
// Buffer Lock/Unlock
virtual void* LockVertexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...);
virtual void* LockIndexBuffer_BottomOfPipe(class FRHICommandListImmediate& RHICmdList, ...);
(......)
};
以上只显示了部分接口,其中部分接口要求从渲染线程调用,部分须从游戏线程调用。大多数接口在被调用前需刷新指定类型的命令,比如:
class RHI_API FDynamicRHI
{
// FlushType: Wait RHI Thread
void RHIExecuteCommandList(FRHICommandList* CmdList);
// FlushType: Flush Immediate
void RHIBlockUntilGPUIdle();
// FlushType: Thread safe
void RHITick(float DeltaTime);
};
那么调用以上接口的代码如下:
class RHI_API FRHICommandListImmediate : public FRHICommandList
{
void ExecuteCommandList(FRHICommandList* CmdList)
{
// 等待RHI线程.
FScopedRHIThreadStaller StallRHIThread(*this);
GDynamicRHI->RHIExecuteCommandList(CmdList);
}
void BlockUntilGPUIdle()
{
// 调用FDynamicRHI::RHIBlockUntilGPUIdle须刷新RHI.
ImmediateFlush(EImmediateFlushType::FlushRHIThread);
GDynamicRHI->RHIBlockUntilGPUIdle();
}
void Tick(float DeltaTime)
{
// 由于FDynamicRHI::RHITick是Thread Safe(线程安全), 所以不需要调用ImmediateFlush或等待事件.
GDynamicRHI->RHITick(DeltaTime);
}
};
我们继续看FDynamicRHI的子类定义:
// Engine\Source\Runtime\Apple\MetalRHI\Private\MetalDynamicRHI.h
class FMetalDynamicRHI : public FDynamicRHI
{
public:
FMetalDynamicRHI(ERHIFeatureLevel::Type RequestedFeatureLevel);
~FMetalDynamicRHI();
// 设置必要的内部资源
void SetupRecursiveResources();
// FDynamicRHI interface.
virtual void Init();
virtual void Shutdown() {}
virtual const TCHAR* GetName() override { return TEXT("Metal"); }
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) final override;
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) final override;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(...) final override;
(......)
private:
// 立即模式上下文.
FMetalRHIImmediateCommandContext ImmediateContext;
// 异步计算上下文.
FMetalRHICommandContext* AsyncComputeContext;
// 顶点声明缓存.
TMap<uint32, FVertexDeclarationRHIRef> VertexDeclarationCache;
};
// Engine\Source\Runtime\D3D12RHI\Private\D3D12RHIPrivate.h
class FD3D12DynamicRHI : public FDynamicRHI
{
static FD3D12DynamicRHI* SingleD3DRHI;
public:
static D3D12RHI_API FD3D12DynamicRHI* GetD3DRHI() { return SingleD3DRHI; }
FD3D12DynamicRHI(const TArray<TSharedPtr<FD3D12Adapter>>& ChosenAdaptersIn, bool bInPixEventEnabled);
virtual ~FD3D12DynamicRHI();
// FDynamicRHI interface.
virtual void Init() override;
virtual void PostInit() override;
virtual void Shutdown() override;
virtual const TCHAR* GetName() override { return TEXT("D3D12"); }
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) final override;
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) final override;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) final override;
(......)
protected:
// 已选择的适配器.
TArray<TSharedPtr<FD3D12Adapter>> ChosenAdapters;
// AMD AGS工具库上下文.
AGSContext* AmdAgsContext;
// D3D12设备.
inline FD3D12Device* GetRHIDevice(uint32 GPUIndex)
{
return GetAdapter().GetDevice(GPUIndex);
}
(......)
};
// Engine\Source\Runtime\EmptyRHI\Public\EmptyRHI.h
class FEmptyDynamicRHI : public FDynamicRHI, public IRHICommandContext
{
(......)
};
// Engine\Source\Runtime\NullDrv\Public\NullRHI.h
class FNullDynamicRHI : public FDynamicRHI , public IRHICommandContextPSOFallback
{
(......)
};
class OPENGLDRV_API FOpenGLDynamicRHI final : public FDynamicRHI, public IRHICommandContextPSOFallback
{
public:
FOpenGLDynamicRHI();
~FOpenGLDynamicRHI();
// FDynamicRHI interface.
virtual void Init();
virtual void PostInit();
virtual void Shutdown();
virtual const TCHAR* GetName() override { return TEXT("OpenGL"); }
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) final override;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) final override;
virtual FBlendStateRHIRef RHICreateBlendState(const FBlendStateInitializerRHI& Initializer) final override;
(......)
private:
// 计数器.
uint32 SceneFrameCounter;
uint32 ResourceTableFrameCounter;
// RHI设备状态, 独立于使用的底层OpenGL上下文.
FOpenGLRHIState PendingState;
FOpenGLStreamedVertexBufferArray DynamicVertexBuffers;
FOpenGLStreamedIndexBufferArray DynamicIndexBuffers;
FSamplerStateRHIRef PointSamplerState;
// 已创建的视口.
TArray<FOpenGLViewport*> Viewports;
TRefCountPtr<FOpenGLViewport> DrawingViewport;
bool bRevertToSharedContextAfterDrawingViewport;
// 已绑定的着色器状态历史.
TGlobalResource< TBoundShaderStateHistory<10000> > BoundShaderStateHistory;
// 逐上下文状态缓存.
FOpenGLContextState InvalidContextState;
FOpenGLContextState SharedContextState;
FOpenGLContextState RenderingContextState;
// 统一缓冲区.
TArray<FRHIUniformBuffer*> GlobalUniformBuffers;
TMap<GLuint, TPair<GLenum, GLenum>> TextureMipLimits;
// 底层平台相关的数据.
FPlatformOpenGLDevice* PlatformDevice;
// 查询相关.
TArray<FOpenGLRenderQuery*> Queries;
FCriticalSection QueriesListCriticalSection;
// 配置和呈现数据.
FOpenGLGPUProfiler GPUProfilingData;
FCriticalSection CustomPresentSection;
TRefCountPtr<class FRHICustomPresent> CustomPresent;
(......)
};
// Engine\Source\Runtime\RHI\Public\RHIValidation.h
class FValidationRHI : public FDynamicRHI
{
public:
RHI_API FValidationRHI(FDynamicRHI* InRHI);
RHI_API virtual ~FValidationRHI();
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) override final;
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) override final;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) override final;
(......)
// RHI实例.
FDynamicRHI* RHI;
// 所属的上下文.
TIndirectArray<IRHIComputeContext> OwnedContexts;
// 深度模板状态列表.
TMap<FRHIDepthStencilState*, FDepthStencilStateInitializerRHI> DepthStencilStates;
};
// Engine\Source\Runtime\VulkanRHI\Public\VulkanDynamicRHI.h
class FVulkanDynamicRHI : public FDynamicRHI
{
public:
FVulkanDynamicRHI();
~FVulkanDynamicRHI();
// FDynamicRHI interface.
virtual void Init() final override;
virtual void PostInit() final override;
virtual void Shutdown() final override;;
virtual const TCHAR* GetName() final override { return TEXT("Vulkan"); }
void InitInstance();
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) final override;
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) final override;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) final override;
(......)
protected:
// 实例.
VkInstance Instance;
TArray<const ANSICHAR*> InstanceExtensions;
TArray<const ANSICHAR*> InstanceLayers;
// 设备.
TArray<FVulkanDevice*> Devices;
FVulkanDevice* Device;
// 视口.
TArray<FVulkanViewport*> Viewports;
TRefCountPtr<FVulkanViewport> DrawingViewport;
// 缓存.
IConsoleObject* SavePipelineCacheCmd = nullptr;
IConsoleObject* RebuildPipelineCacheCmd = nullptr;
// 临界区.
FCriticalSection LockBufferCS;
// 内部接口.
void CreateInstance();
void SelectAndInitDevice();
void InitGPU(FVulkanDevice* Device);
void InitDevice(FVulkanDevice* Device);
(......)
};
// Engine\Source\Runtime\Windows\D3D11RHI\Private\D3D11RHIPrivate.h
class D3D11RHI_API FD3D11DynamicRHI : public FDynamicRHI, public IRHICommandContextPSOFallback
{
public:
FD3D11DynamicRHI(IDXGIFactory1* InDXGIFactory1,D3D_FEATURE_LEVEL InFeatureLevel,int32 InChosenAdapter, const DXGI_ADAPTER_DESC& ChosenDescription);
virtual ~FD3D11DynamicRHI();
virtual void InitD3DDevice();
// FDynamicRHI interface.
virtual void Init() override;
virtual void PostInit() override;
virtual void Shutdown() override;
virtual const TCHAR* GetName() override { return TEXT("D3D11"); }
// HDR display output
virtual void EnableHDR();
virtual void ShutdownHDR();
virtual FSamplerStateRHIRef RHICreateSamplerState(const FSamplerStateInitializerRHI& Initializer) final override;
virtual FRasterizerStateRHIRef RHICreateRasterizerState(const FRasterizerStateInitializerRHI& Initializer) final override;
virtual FDepthStencilStateRHIRef RHICreateDepthStencilState(const FDepthStencilStateInitializerRHI& Initializer) final override;
(......)
ID3D11Device* GetDevice() const
{
return Direct3DDevice;
}
FD3D11DeviceContext* GetDeviceContext() const
{
return Direct3DDeviceIMContext;
}
IDXGIFactory1* GetFactory() const
{
return DXGIFactory1;
}
protected:
// D3D工厂(接口).
TRefCountPtr<IDXGIFactory1> DXGIFactory1;
// D3D设备.
TRefCountPtr<FD3D11Device> Direct3DDevice;
// D3D设备的立即上下文.
TRefCountPtr<FD3D11DeviceContext> Direct3DDeviceIMContext;
// 线程锁.
FD3D11LockTracker LockTracker;
FCriticalSection LockTrackerCS;
// 视口.
TArray<FD3D11Viewport*> Viewports;
TRefCountPtr<FD3D11Viewport> DrawingViewport;
// AMD AGS工具库上下文.
AGSContext* AmdAgsContext;
// RT, UAV, 着色器等资源.
TRefCountPtr<ID3D11RenderTargetView> CurrentRenderTargets[D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT];
TRefCountPtr<FD3D11UnorderedAccessView> CurrentUAVs[D3D11_PS_CS_UAV_REGISTER_COUNT];
ID3D11UnorderedAccessView* UAVBound[D3D11_PS_CS_UAV_REGISTER_COUNT];
TRefCountPtr<ID3D11DepthStencilView> CurrentDepthStencilTarget;
TRefCountPtr<FD3D11TextureBase> CurrentDepthTexture;
FD3D11BaseShaderResource* CurrentResourcesBoundAsSRVs[SF_NumStandardFrequencies][D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT];
FD3D11BaseShaderResource* CurrentResourcesBoundAsVBs[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT];
FD3D11BaseShaderResource* CurrentResourceBoundAsIB;
int32 MaxBoundShaderResourcesIndex[SF_NumStandardFrequencies];
FUniformBufferRHIRef BoundUniformBuffers[SF_NumStandardFrequencies][MAX_UNIFORM_BUFFERS_PER_SHADER_STAGE];
uint16 DirtyUniformBuffers[SF_NumStandardFrequencies];
TArray<FRHIUniformBuffer*> GlobalUniformBuffers;
// 已创建的常量缓冲区.
TArray<TRefCountPtr<FD3D11ConstantBuffer> > VSConstantBuffers;
TArray<TRefCountPtr<FD3D11ConstantBuffer> > HSConstantBuffers;
TArray<TRefCountPtr<FD3D11ConstantBuffer> > DSConstantBuffers;
TArray<TRefCountPtr<FD3D11ConstantBuffer> > PSConstantBuffers;
TArray<TRefCountPtr<FD3D11ConstantBuffer> > GSConstantBuffers;
TArray<TRefCountPtr<FD3D11ConstantBuffer> > CSConstantBuffers;
// 已绑定的着色器状态历史.
TGlobalResource< TBoundShaderStateHistory<10000> > BoundShaderStateHistory;
FComputeShaderRHIRef CurrentComputeShader;
(......)
};
它们的核心继承UML图如下:
可点击下面图片放大:
需要注意的是,传统图形API(D3D11、OpenGL)除了继承FDynamicRHI,还需要继承IRHICommandContextPSOFallback,因为需要借助后者的接口处理PSO的数据和行为,以保证传统和现代API对PSO的一致处理行为。也正因为此,现代图形API(D3D12、Vulkan、Metal)不需要继承IRHICommandContext的任何继承体系的类型,单单直接继承FDynamicRHI就可以处理RHI层的所有数据和操作。
既然现代图形API(D3D12、Vulkan、Metal)的DynamicRHI没有继承IRHICommandContext的任何继承体系的类型,那么它们是如何实现FDynamicRHI::RHIGetDefaultContext的接口?下面以FD3D12DynamicRHI为例:
IRHICommandContext* FD3D12DynamicRHI::RHIGetDefaultContext()
{
FD3D12Adapter& Adapter = GetAdapter();
IRHICommandContext* DefaultCommandContext = nullptr;
if (GNumExplicitGPUsForRendering > 1) // 多GPU
{
DefaultCommandContext = static_cast<IRHICommandContext*>(&Adapter.GetDefaultContextRedirector());
}
else // 单GPU
{
FD3D12Device* Device = Adapter.GetDevice(0);
DefaultCommandContext = static_cast<IRHICommandContext*>(&Device->GetDefaultCommandContext());
}
return DefaultCommandContext;
}
无论是单GPU还是多GPU,都是从FD3D12CommandContext强制转换而来,而FD3D12CommandContext又是IRHICommandContext的子子子类,因此静态类型转换完全没问题。
10.3.3.1 FD3D11DynamicRHI
FD3D11DynamicRHI包含或引用了若干D3D11平台相关的核心类型,它们的定义如下所示:
// Engine\Source\Runtime\Windows\D3D11RHI\Private\D3D11RHIPrivate.h
class D3D11RHI_API FD3D11DynamicRHI : public FDynamicRHI, public IRHICommandContextPSOFallback
{
(......)
protected:
// D3D工厂(接口).
TRefCountPtr<IDXGIFactory1> DXGIFactory1;
// D3D设备.
TRefCountPtr<FD3D11Device> Direct3DDevice;
// D3D设备的立即上下文.
TRefCountPtr<FD3D11DeviceContext> Direct3DDeviceIMContext;
// 视口.
TArray<FD3D11Viewport*> Viewports;
TRefCountPtr<FD3D11Viewport> DrawingViewport;
// AMD AGS工具库上下文.
AGSContext* AmdAgsContext;
(......)
};
// Engine\Source\Runtime\Windows\D3D11RHI\Private\Windows\D3D11RHIBasePrivate.h
typedef ID3D11DeviceContext FD3D11DeviceContext;
typedef ID3D11Device FD3D11Device;
// Engine\Source\Runtime\Windows\D3D11RHI\Public\D3D11Viewport.h
class FD3D11Viewport : public FRHIViewport
{
public:
FD3D11Viewport(class FD3D11DynamicRHI* InD3DRHI) : D3DRHI(InD3DRHI), PresentFailCount(0), ValidState (0), FrameSyncEvent(InD3DRHI);
FD3D11Viewport(class FD3D11DynamicRHI* InD3DRHI, HWND InWindowHandle, uint32 InSizeX, uint32 InSizeY, bool bInIsFullscreen, EPixelFormat InPreferredPixelFormat);
~FD3D11Viewport();
virtual void Resize(uint32 InSizeX, uint32 InSizeY, bool bInIsFullscreen, EPixelFormat PreferredPixelFormat);
void ConditionalResetSwapChain(bool bIgnoreFocus);
void CheckHDRMonitorStatus();
// 呈现交换链.
bool Present(bool bLockToVsync);
// Accessors.
FIntPoint GetSizeXY() const;
FD3D11Texture2D* GetBackBuffer() const;
EColorSpaceAndEOTF GetPixelColorSpace() const;
void WaitForFrameEventCompletion();
void IssueFrameEvent()
IDXGISwapChain* GetSwapChain() const;
virtual void* GetNativeSwapChain() const override;
virtual void* GetNativeBackBufferTexture() const override;
virtual void* GetNativeBackBufferRT() const overrid;
virtual void SetCustomPresent(FRHICustomPresent* InCustomPresent) override
virtual FRHICustomPresent* GetCustomPresent() const;
virtual void* GetNativeWindow(void** AddParam = nullptr) const override;
static FD3D11Texture2D* GetSwapChainSurface(FD3D11DynamicRHI* D3DRHI, EPixelFormat PixelFormat, uint32 SizeX, uint32 SizeY, IDXGISwapChain* SwapChain);
protected:
// 动态RHI.
FD3D11DynamicRHI* D3DRHI;
// 交换链.
TRefCountPtr<IDXGISwapChain> SwapChain;
// 后渲染缓冲.
TRefCountPtr<FD3D11Texture2D> BackBuffer;
FD3D11EventQuery FrameSyncEvent;
FCustomPresentRHIRef CustomPresent;
(......)
};
FD3D11DynamicRHI绘制成UML图之后如下所示:
10.3.3.2 FOpenGLDynamicRHI
FOpenGLDynamicRHI相关的核心类型定义如下:
class OPENGLDRV_API FOpenGLDynamicRHI final : public FDynamicRHI, public IRHICommandContextPSOFallback
{
(......)
private:
// 已创建的视口.
TArray<FOpenGLViewport*> Viewports;
// 底层平台相关的数据.
FPlatformOpenGLDevice* PlatformDevice;
};
// Engine\Source\Runtime\OpenGLDrv\Public\OpenGLResources.h
class FOpenGLViewport : public FRHIViewport
{
public:
FOpenGLViewport(class FOpenGLDynamicRHI* InOpenGLRHI,void* InWindowHandle,uint32 InSizeX,uint32 InSizeY,bool bInIsFullscreen,EPixelFormat PreferredPixelFormat);
~FOpenGLViewport();
void Resize(uint32 InSizeX,uint32 InSizeY,bool bInIsFullscreen);
// Accessors.
FIntPoint GetSizeXY() const;
FOpenGLTexture2D *GetBackBuffer() const;
bool IsFullscreen( void ) const;
void WaitForFrameEventCompletion();
void IssueFrameEvent();
virtual void* GetNativeWindow(void** AddParam) const override;
struct FPlatformOpenGLContext* GetGLContext() const;
FOpenGLDynamicRHI* GetOpenGLRHI() const;
virtual void SetCustomPresent(FRHICustomPresent* InCustomPresent) override;
FRHICustomPresent* GetCustomPresent() const;
private:
FOpenGLDynamicRHI* OpenGLRHI;
struct FPlatformOpenGLContext* OpenGLContext;
uint32 SizeX;
uint32 SizeY;
bool bIsFullscreen;
EPixelFormat PixelFormat;
bool bIsValid;
TRefCountPtr<FOpenGLTexture2D> BackBuffer;
FOpenGLEventQuery FrameSyncEvent;
FCustomPresentRHIRef CustomPresent;
};
// Engine\Source\Runtime\OpenGLDrv\Private\Android\AndroidOpenGL.cpp
// 安卓系统的OpenGL设备.
struct FPlatformOpenGLDevice
{
bool TargetDirty;
void SetCurrentSharedContext();
void SetCurrentRenderingContext();
void SetupCurrentContext();
void SetCurrentNULLContext();
FPlatformOpenGLDevice();
~FPlatformOpenGLDevice();
void Init();
void LoadEXT();
void Terminate();
void ReInit();
};
// Engine\Source\Runtime\OpenGLDrv\Private\Windows\OpenGLWindows.cpp
// Windows系统的OpenGL设备.
struct FPlatformOpenGLDevice
{
FPlatformOpenGLContext SharedContext;
FPlatformOpenGLContext RenderingContext;
TArray<FPlatformOpenGLContext*> ViewportContexts;
bool TargetDirty;
/** Guards against operating on viewport contexts from more than one thread at the same time. */
FCriticalSection* ContextUsageGuard;
};
// Engine\Source\Runtime\OpenGLDrv\Private\Lumin\LuminOpenGL.cpp
// Lumin系统的OpenGL设备.
struct FPlatformOpenGLDevice
{
void SetCurrentSharedContext();
void SetCurrentRenderingContext();
void SetCurrentNULLContext();
FPlatformOpenGLDevice();
~FPlatformOpenGLDevice();
void Init();
void LoadEXT();
void Terminate();
void ReInit();
};
// Engine\Source\Runtime\OpenGLDrv\Private\Linux\OpenGLLinux.cpp
// Linux系统的OpenGL设备.
struct FPlatformOpenGLDevice
{
FPlatformOpenGLContext SharedContext;
FPlatformOpenGLContext RenderingContext;
int32 NumUsedContexts;
FCriticalSection* ContextUsageGuard;
};
// Engine\Source\Runtime\OpenGLDrv\Private\Lumin\LuminGL4.cpp
// Lumin系统的OpenGL设备.
struct FPlatformOpenGLDevice
{
FPlatformOpenGLContext SharedContext;
FPlatformOpenGLContext RenderingContext;
TArray<FPlatformOpenGLContext*> ViewportContexts;
bool TargetDirty;
FCriticalSection* ContextUsageGuard;
};
以上显示不同操作系统,OpenGL设备对象的定义有所不同。实际上,OpenGL上下文也因操作系统而异,下面以Windows为例:
// Engine\Source\Runtime\OpenGLDrv\Private\Windows\OpenGLWindows.cpp
struct FPlatformOpenGLContext
{
// 窗口句柄
HWND WindowHandle;
// 设备上下文.
HDC DeviceContext;
// OpenGL上下文.
HGLRC OpenGLContext;
// 其它实际.
bool bReleaseWindowOnDestroy;
int32 SyncInterval;
GLuint ViewportFramebuffer;
GLuint VertexArrayObject; // one has to be generated and set for each context (OpenGL 3.2 Core requirements)
GLuint BackBufferResource;
GLenum BackBufferTarget;
};
FOpenGLDynamicRHI绘制成的UML图如下所示:
10.3.3.3 FD3D12DynamicRHI
FD3D12DynamicRHI的核心类型定义如下:
// Engine\Source\Runtime\D3D12RHI\Private\D3D12RHIPrivate.h
class FD3D12DynamicRHI : public FDynamicRHI
{
(......)
protected:
// 已选择的适配器.
TArray<TSharedPtr<FD3D12Adapter>> ChosenAdapters;
// D3D12设备.
inline FD3D12Device* GetRHIDevice(uint32 GPUIndex)
{
return GetAdapter().GetDevice(GPUIndex);
}
(......)
};
// Engine\Source\Runtime\D3D12RHI\Private\D3D12Adapter.h
class FD3D12Adapter : public FNoncopyable
{
public:
void Initialize(FD3D12DynamicRHI* RHI);
void InitializeDevices();
void InitializeRayTracing();
// 资源创建.
HRESULT CreateCommittedResource(...)
HRESULT CreateBuffer(...);
template <typename BufferType>
BufferType* CreateRHIBuffer(...);
inline FD3D12CommandContextRedirector& GetDefaultContextRedirector();
inline FD3D12CommandContextRedirector& GetDefaultAsyncComputeContextRedirector();
FD3D12FastConstantAllocator& GetTransientUniformBufferAllocator();
void BlockUntilIdle();
(......)
protected:
virtual void CreateRootDevice(bool bWithDebug);
FD3D12DynamicRHI* OwningRHI;
// LDA设置拥有一个ID3D12Device
TRefCountPtr<ID3D12Device> RootDevice;
TRefCountPtr<ID3D12Device1> RootDevice1;
TRefCountPtr<IDXGIAdapter> DxgiAdapter;
TRefCountPtr<IDXGIFactory> DxgiFactory;
TRefCountPtr<IDXGIFactory2> DxgiFactory2;
// 每个设备代表一个物理GPU“节点”.
FD3D12Device* Devices[MAX_NUM_GPUS];
FD3D12CommandContextRedirector DefaultContextRedirector;
FD3D12CommandContextRedirector DefaultAsyncComputeContextRedirector;
TArray<FD3D12Viewport*> Viewports;
TRefCountPtr<FD3D12Viewport> DrawingViewport;
(......)
};
// Engine\Source\Runtime\D3D12RHI\Private\D3D12RHICommon.h
class FD3D12AdapterChild
{
protected:
FD3D12Adapter* ParentAdapter;
(......)
};
class FD3D12DeviceChild
{
protected:
FD3D12Device* Parent;
(......)
};
// Engine\Source\Runtime\D3D12RHI\Private\D3D12Device.h
class FD3D12Device : public FD3D12SingleNodeGPUObject, public FNoncopyable, public FD3D12AdapterChild
{
public:
TArray<FD3D12CommandListHandle> PendingCommandLists;
void Initialize();
void CreateCommandContexts();
void InitPlatformSpecific();
virtual void Cleanup();
bool GetQueryData(FD3D12RenderQuery& Query, bool bWait);
ID3D12Device* GetDevice();
void BlockUntilIdle();
bool IsGPUIdle();
FD3D12SamplerState* CreateSampler(const FSamplerStateInitializerRHI& Initializer);
(......)
protected:
// CommandListManager
FD3D12CommandListManager* CommandListManager;
FD3D12CommandListManager* CopyCommandListManager;
FD3D12CommandListManager* AsyncCommandListManager;
FD3D12CommandAllocatorManager TextureStreamingCommandAllocatorManager;
// Allocator
FD3D12OfflineDescriptorManager RTVAllocator;
FD3D12OfflineDescriptorManager DSVAllocator;
FD3D12OfflineDescriptorManager SRVAllocator;
FD3D12OfflineDescriptorManager UAVAllocator;
FD3D12DefaultBufferAllocator DefaultBufferAllocator;
// FD3D12CommandContext
TArray<FD3D12CommandContext*> CommandContextArray;
TArray<FD3D12CommandContext*> FreeCommandContexts;
TArray<FD3D12CommandContext*> AsyncComputeContextArray;
(......)
};
// Engine\Source\Runtime\D3D12RHI\Public\D3D12Viewport.h
class FD3D12Viewport : public FRHIViewport, public FD3D12AdapterChild
{
public:
void Init();
void Resize(uint32 InSizeX, uint32 InSizeY, bool bInIsFullscreen, EPixelFormat PreferredPixelFormat);
void ConditionalResetSwapChain(bool bIgnoreFocus);
bool Present(bool bLockToVsync);
void WaitForFrameEventCompletion();
bool CurrentOutputSupportsHDR() const;
(......)
private:
HWND WindowHandle;
#if D3D12_VIEWPORT_EXPOSES_SWAP_CHAIN
TRefCountPtr<IDXGISwapChain1> SwapChain1;
TRefCountPtr<IDXGISwapChain4> SwapChain4;
#endif
TArray<TRefCountPtr<FD3D12Texture2D>> BackBuffers;
TRefCountPtr<FD3D12Texture2D> DummyBackBuffer_RenderThread;
uint32 CurrentBackBufferIndex_RHIThread;
FD3D12Texture2D* BackBuffer_RHIThread;
TArray<TRefCountPtr<FD3D12Texture2D>> SDRBackBuffers;
TRefCountPtr<FD3D12Texture2D> SDRDummyBackBuffer_RenderThread;
FD3D12Texture2D* SDRBackBuffer_RHIThread;
bool CheckHDRSupport();
void EnableHDR();
void ShutdownHDR();
(......)
};
// Engine\Source\Runtime\D3D12RHI\Private\D3D12CommandContext.h
class FD3D12CommandContextBase : public IRHICommandContext, public FD3D12AdapterChild
{
public:
FD3D12CommandContextBase(class FD3D12Adapter* InParent, FRHIGPUMask InGPUMask, bool InIsDefaultContext, bool InIsAsyncComputeContext);
void RHIBeginDrawingViewport(FRHIViewport* Viewport, FRHITexture* RenderTargetRHI) final override;
void RHIEndDrawingViewport(FRHIViewport* Viewport, bool bPresent, bool bLockToVsync) final override;
void RHIBeginFrame() final override;
void RHIEndFrame() final override;
(......)
protected:
virtual FD3D12CommandContext* GetContext(uint32 InGPUIndex) = 0;
FRHIGPUMask GPUMask;
(......)
};
class FD3D12CommandContext : public FD3D12CommandContextBase, public FD3D12DeviceChild
{
public:
FD3D12CommandContext(class FD3D12Device* InParent, bool InIsDefaultContext, bool InIsAsyncComputeContext);
virtual ~FD3D12CommandContext();
void EndFrame();
void ConditionalObtainCommandAllocator();
void ReleaseCommandAllocator();
FD3D12CommandListManager& GetCommandListManager();
void OpenCommandList();
void CloseCommandList();
FD3D12CommandListHandle FlushCommands(bool WaitForCompletion = false, EFlushCommandsExtraAction ExtraAction = FCEA_None);
void Finish(TArray<FD3D12CommandListHandle>& CommandLists);
FD3D12FastConstantAllocator ConstantsAllocator;
FD3D12CommandListHandle CommandListHandle;
FD3D12CommandAllocator* CommandAllocator;
FD3D12CommandAllocatorManager CommandAllocatorManager;
FD3D12DynamicRHI& OwningRHI;
// State Block.
FD3D12RenderTargetView* CurrentRenderTargets[D3D12_SIMULTANEOUS_RENDER_TARGET_COUNT];
FD3D12DepthStencilView* CurrentDepthStencilTarget;
FD3D12TextureBase* CurrentDepthTexture;
uint32 NumSimultaneousRenderTargets;
// Uniform Buffer.
FD3D12UniformBuffer* BoundUniformBuffers[SF_NumStandardFrequencies][MAX_CBS];
FUniformBufferRHIRef BoundUniformBufferRefs[SF_NumStandardFrequencies][MAX_CBS];
uint16 DirtyUniformBuffers[SF_NumStandardFrequencies];
// 常量缓冲区.
FD3D12ConstantBuffer VSConstantBuffer;
FD3D12ConstantBuffer HSConstantBuffer;
FD3D12ConstantBuffer DSConstantBuffer;
FD3D12ConstantBuffer PSConstantBuffer;
FD3D12ConstantBuffer GSConstantBuffer;
FD3D12ConstantBuffer CSConstantBuffer;
template <class ShaderType> void SetResourcesFromTables(const ShaderType* RESTRICT);
template <class ShaderType> uint32 SetUAVPSResourcesFromTables(const ShaderType* RESTRICT Shader);
void CommitGraphicsResourceTables();
void CommitComputeResourceTables(FD3D12ComputeShader* ComputeShader);
void ValidateExclusiveDepthStencilAccess(FExclusiveDepthStencil Src) const;
void CommitRenderTargetsAndUAVs();
virtual void SetDepthBounds(float MinDepth, float MaxDepth);
virtual void SetShadingRate(EVRSShadingRate ShadingRate, EVRSRateCombiner Combiner);
(......)
protected:
FD3D12CommandContext* GetContext(uint32 InGPUIndex) final override;
TArray<FRHIUniformBuffer*> GlobalUniformBuffers;
};
class FD3D12CommandContextRedirector final : public FD3D12CommandContextBase
{
public:
FD3D12CommandContextRedirector(class FD3D12Adapter* InParent, bool InIsDefaultContext, bool InIsAsyncComputeContext);
virtual void RHISetComputeShader(FRHIComputeShader* ComputeShader) final override;
virtual void RHISetComputePipelineState(FRHIComputePipelineState* ComputePipelineState) final override;
virtual void RHIDispatchComputeShader(uint32 ThreadGroupCountX, uint32 ThreadGroupCountY, uint32 ThreadGroupCountZ) final override;
(......)
private:
FRHIGPUMask PhysicalGPUMask;
FD3D12CommandContext* PhysicalContexts[MAX_NUM_GPUS];
};
// Engine\Source\Runtime\D3D12RHI\Private\D3D12CommandContext.cpp
class FD3D12CommandContextContainer : public IRHICommandContextContainer
{
FD3D12Adapter* Adapter;
FD3D12CommandContext* CmdContext;
FD3D12CommandContextRedirector* CmdContextRedirector;
FRHIGPUMask GPUMask;
TArray<FD3D12CommandListHandle> CommandLists;
(......)
};
以上可知,D3D12涉及的核心类型非常多,涉及多层级的复杂的数据结构链,其内存布局如下所示:
[Engine]--
|
|-[RHI]--
|
|-[Adapter]-- (LDA)
| |
| |- [Device]
| |
| |- [Device]
|
|-[Adapter]--
|
|- [Device]--
|
|-[CommandContext]
|
|-[CommandContext]---
|
|-[StateCache]
在这种方案下,FD3D12Device表示1个节点,属于1个物理适配器。这种结构允许一个RHI控制几个不同类型的硬件设置,例如:
- 单GPU系统(常规案例)。
- 多GPU系统,如LDA(Crossfire/SLI)。
- 非对称多GPU系统,如分离、集成GPU协作系统。
将D3D12的核心类抽象成UML图之后,如下所示:
看不清可以点击下面图片版本:
10.3.3.4 FVulkanDynamicRHI
FVulkanDynamicRHI涉及的核心类如下:
// Engine\Source\Runtime\VulkanRHI\Public\VulkanDynamicRHI.h
class FVulkanDynamicRHI : public FDynamicRHI
{
public:
// FDynamicRHI interface.
virtual void Init() final override;
virtual void PostInit() final override;
virtual void Shutdown() final override;;
void InitInstance();
(......)
protected:
// 实例.
VkInstance Instance;
// 设备.
TArray<FVulkanDevice*> Devices;
FVulkanDevice* Device;
// 视口.
TArray<FVulkanViewport*> Viewports;
(......)
};
// Engine\Source\Runtime\VulkanRHI\Private\VulkanDevice.h
class FVulkanDevice
{
public:
FVulkanDevice(FVulkanDynamicRHI* InRHI, VkPhysicalDevice Gpu);
~FVulkanDevice();
bool QueryGPU(int32 DeviceIndex);
void InitGPU(int32 DeviceIndex);
void CreateDevice();
void PrepareForDestroy();
void Destroy();
void WaitUntilIdle();
void PrepareForCPURead();
void SubmitCommandsAndFlushGPU();
(......)
private:
void SubmitCommands(FVulkanCommandListContext* Context);
// vk设备.
VkDevice Device;
// vk物理设备.
VkPhysicalDevice Gpu;
VkPhysicalDeviceProperties GpuProps;
VkPhysicalDeviceFeatures PhysicalFeatures;
// 管理器.
VulkanRHI::FDeviceMemoryManager DeviceMemoryManager;
VulkanRHI::FMemoryManager MemoryManager;
VulkanRHI::FDeferredDeletionQueue2 DeferredDeletionQueue;
VulkanRHI::FStagingManager StagingManager;
VulkanRHI::FFenceManager FenceManager;
FVulkanDescriptorPoolsManager* DescriptorPoolsManager = nullptr;
FVulkanDescriptorSetCache* DescriptorSetCache = nullptr;
FVulkanShaderFactory ShaderFactory;
// 队列.
FVulkanQueue* GfxQueue;
FVulkanQueue* ComputeQueue;
FVulkanQueue* TransferQueue;
FVulkanQueue* PresentQueue;
// GPU品牌.
EGpuVendorId VendorId = EGpuVendorId::NotQueried;
// 命令队列上下文.
FVulkanCommandListContextImmediate* ImmediateContext;
FVulkanCommandListContext* ComputeContext;
TArray<FVulkanCommandListContext*> CommandContexts;
FVulkanDynamicRHI* RHI = nullptr;
class FVulkanPipelineStateCacheManager* PipelineStateCache;
(......)
};
// Engine\Source\Runtime\VulkanRHI\Private\VulkanQueue.h
class FVulkanQueue
{
public:
FVulkanQueue(FVulkanDevice* InDevice, uint32 InFamilyIndex);
~FVulkanQueue();
void Submit(FVulkanCmdBuffer* CmdBuffer, uint32 NumSignalSemaphores = 0, VkSemaphore* SignalSemaphores = nullptr);
void Submit(FVulkanCmdBuffer* CmdBuffer, VkSemaphore SignalSemaphore);
void GetLastSubmittedInfo(FVulkanCmdBuffer*& OutCmdBuffer, uint64& OutFenceCounter) const;
(......)
private:
// vk队列
VkQueue Queue;
// 家族索引.
uint32 FamilyIndex;
// 队列索引.
uint32 QueueIndex;
FVulkanDevice* Device;
// vk命令缓冲.
FVulkanCmdBuffer* LastSubmittedCmdBuffer;
uint64 LastSubmittedCmdBufferFenceCounter;
uint64 SubmitCounter;
mutable FCriticalSection CS;
void UpdateLastSubmittedCommandBuffer(FVulkanCmdBuffer* CmdBuffer);
};
// Engine\Source\Runtime\VulkanRHI\Public\VulkanMemory.h
// 设备子节点.
class FDeviceChild
{
public:
FDeviceChild(FVulkanDevice* InDevice = nullptr);
(......)
protected:
FVulkanDevice* Device;
};
// Engine\Source\Runtime\VulkanRHI\Private\VulkanContext.h
class FVulkanCommandListContext : public IRHICommandContext
{
public:
FVulkanCommandListContext(FVulkanDynamicRHI* InRHI, FVulkanDevice* InDevice, FVulkanQueue* InQueue, FVulkanCommandListContext* InImmediate);
virtual ~FVulkanCommandListContext();
static inline FVulkanCommandListContext& GetVulkanContext(IRHICommandContext& CmdContext);
inline bool IsImmediate() const;
virtual void RHISetStreamSource(uint32 StreamIndex, FRHIVertexBuffer* VertexBuffer, uint32 Offset) final override;
virtual void RHISetViewport(float MinX, float MinY, float MinZ, float MaxX, float MaxY, float MaxZ) final override;
virtual void RHISetScissorRect(bool bEnable, uint32 MinX, uint32 MinY, uint32 MaxX, uint32 MaxY) final override;
(......)
inline FVulkanDevice* GetDevice() const;
void PrepareParallelFromBase(const FVulkanCommandListContext& BaseContext);
protected:
FVulkanDynamicRHI* RHI;
FVulkanCommandListContext* Immediate;
FVulkanDevice* Device;
FVulkanQueue* Queue;
FVulkanUniformBufferUploader* UniformBufferUploader;
FVulkanCommandBufferManager* CommandBufferManager;
static FVulkanLayoutManager LayoutManager;
private:
FVulkanGPUProfiler GpuProfiler;
TArray<FRHIUniformBuffer*> GlobalUniformBuffers;
(......)
};
// 立即模式的命令队列上下文.
class FVulkanCommandListContextImmediate : public FVulkanCommandListContext
{
public:
FVulkanCommandListContextImmediate(FVulkanDynamicRHI* InRHI, FVulkanDevice* InDevice, FVulkanQueue* InQueue);
};
// 命令上下文容器.
struct FVulkanCommandContextContainer : public IRHICommandContextContainer, public VulkanRHI::FDeviceChild
{
FVulkanCommandListContext* CmdContext;
FVulkanCommandContextContainer(FVulkanDevice* InDevice);
virtual IRHICommandContext* GetContext() override final;
virtual void FinishContext() override final;
virtual void SubmitAndFreeContextContainer(int32 Index, int32 Num) override final;
void* operator new(size_t Size);
void operator delete(void* RawMemory);
(......)
};
// Engine\Source\Runtime\VulkanRHI\Private\VulkanViewport.h
class FVulkanViewport : public FRHIViewport, public VulkanRHI::FDeviceChild
{
public:
FVulkanViewport(FVulkanDynamicRHI* InRHI, FVulkanDevice* InDevice, void* InWindowHandle, uint32 InSizeX,uint32 InSizeY,bool bInIsFullscreen, EPixelFormat InPreferredPixelFormat);
~FVulkanViewport();
void AdvanceBackBufferFrame(FRHICommandListImmediate& RHICmdList);
void WaitForFrameEventCompletion();
virtual void SetCustomPresent(FRHICustomPresent* InCustomPresent) override final;
virtual FRHICustomPresent* GetCustomPresent() const override final;
virtual void Tick(float DeltaTime) override final;
bool Present(FVulkanCommandListContext* Context, FVulkanCmdBuffer* CmdBuffer, FVulkanQueue* Queue, FVulkanQueue* PresentQueue, bool bLockToVsync);
(......)
protected:
TArray<VkImage, TInlineAllocator<NUM_BUFFERS*2>> BackBufferImages;
TArray<VulkanRHI::FSemaphore*, TInlineAllocator<NUM_BUFFERS*2>> RenderingDoneSemaphores;
TArray<FVulkanTextureView, TInlineAllocator<NUM_BUFFERS*2>> TextureViews;
TRefCountPtr<FVulkanBackBuffer> RHIBackBuffer;
TRefCountPtr<FVulkanTexture2D> RenderingBackBuffer;
/** narrow-scoped section that locks access to back buffer during its recreation*/
FCriticalSection RecreatingSwapchain;
FVulkanDynamicRHI* RHI;
FVulkanSwapChain* SwapChain;
void* WindowHandle;
VulkanRHI::FSemaphore* AcquiredSemaphore;
FCustomPresentRHIRef CustomPresent;
FVulkanCmdBuffer* LastFrameCommandBuffer = nullptr;
(......)
};
若将Vulkan RHI的核心类型绘制成UML图,则是如下图所示:
10.3.3.5 FMetalDynamicRHI
FMetalDynamicRHI的核心类型定义如下:
// Engine\Source\Runtime\Apple\MetalRHI\Private\MetalDynamicRHI.h
class FMetalDynamicRHI : public FDynamicRHI
{
public:
// FDynamicRHI interface.
virtual void Init();
virtual void Shutdown() {}
(......)
private:
// 立即模式上下文.
FMetalRHIImmediateCommandContext ImmediateContext;
// 异步计算上下文.
FMetalRHICommandContext* AsyncComputeContext;
(......)
};
// Engine\Source\Runtime\Apple\MetalRHI\Public\MetalRHIContext.h
class FMetalRHICommandContext : public IRHICommandContext
{
public:
FMetalRHICommandContext(class FMetalProfiler* InProfiler, FMetalContext* WrapContext);
virtual ~FMetalRHICommandContext();
virtual void RHISetComputeShader(FRHIComputeShader* ComputeShader) override;
virtual void RHISetComputePipelineState(FRHIComputePipelineState* ComputePipelineState) override;
virtual void RHIDispatchComputeShader(uint32 ThreadGroupCountX, uint32 ThreadGroupCountY, uint32 ThreadGroupCountZ) final override;
(......)
protected:
// Metal上下文.
FMetalContext* Context;
TSharedPtr<FMetalCommandBufferFence, ESPMode::ThreadSafe> CommandBufferFence;
class FMetalProfiler* Profiler;
FMetalBuffer PendingVertexBuffer;
TArray<FRHIUniformBuffer*> GlobalUniformBuffers;
(......)
};
class FMetalRHIComputeContext : public FMetalRHICommandContext
{
public:
FMetalRHIComputeContext(class FMetalProfiler* InProfiler, FMetalContext* WrapContext);
virtual ~FMetalRHIComputeContext();
virtual void RHISetAsyncComputeBudget(EAsyncComputeBudget Budget) final override;
virtual void RHISetComputeShader(FRHIComputeShader* ComputeShader) final override;
virtual void RHISetComputePipelineState(FRHIComputePipelineState* ComputePipelineState) final override;
virtual void RHISubmitCommandsHint() final override;
};
class FMetalRHIImmediateCommandContext : public FMetalRHICommandContext
{
public:
FMetalRHIImmediateCommandContext(class FMetalProfiler* InProfiler, FMetalContext* WrapContext);
// FRHICommandContext API accessible only on the immediate device context
virtual void RHIBeginDrawingViewport(FRHIViewport* Viewport, FRHITexture* RenderTargetRHI) final override;
virtual void RHIEndDrawingViewport(FRHIViewport* Viewport, bool bPresent, bool bLockToVsync) final override;
(......)
};
// Engine\Source\Runtime\Apple\MetalRHI\Private\MetalContext.h
// 上下文.
class FMetalContext
{
public:
FMetalContext(mtlpp::Device InDevice, FMetalCommandQueue& Queue, bool const bIsImmediate);
virtual ~FMetalContext();
mtlpp::Device& GetDevice();
bool PrepareToDraw(uint32 PrimitiveType, EMetalIndexType IndexType = EMetalIndexType_None);
void SetRenderPassInfo(const FRHIRenderPassInfo& RenderTargetsInfo, bool const bRestart = false);
void SubmitCommandsHint(uint32 const bFlags = EMetalSubmitFlagsCreateCommandBuffer);
void SubmitCommandBufferAndWait();
void ResetRenderCommandEncoder();
void DrawPrimitive(uint32 PrimitiveType, uint32 BaseVertexIndex, uint32 NumPrimitives, uint32 NumInstances);
void DrawPrimitiveIndirect(uint32 PrimitiveType, FMetalVertexBuffer* VertexBuffer, uint32 ArgumentOffset);
void DrawIndexedPrimitive(FMetalBuffer const& IndexBuffer, ...);
void DrawIndexedIndirect(FMetalIndexBuffer* IndexBufferRHI, ...);
void DrawIndexedPrimitiveIndirect(uint32 PrimitiveType, ...);
void DrawPatches(uint32 PrimitiveType, ...);
(......)
protected:
// Metal底层设备.
mtlpp::Device Device;
FMetalCommandQueue& CommandQueue;
FMetalCommandList CommandList;
FMetalStateCache StateCache;
FMetalRenderPass RenderPass;
dispatch_semaphore_t CommandBufferSemaphore;
TSharedPtr<FMetalQueryBufferPool, ESPMode::ThreadSafe> QueryBuffer;
TRefCountPtr<FMetalFence> StartFence;
TRefCountPtr<FMetalFence> EndFence;
int32 NumParallelContextsInPass;
(......)
};
// Engine\Source\Runtime\Apple\MetalRHI\Private\MetalCommandQueue.h
class FMetalCommandQueue
{
public:
FMetalCommandQueue(mtlpp::Device Device, uint32 const MaxNumCommandBuffers = 0);
~FMetalCommandQueue(void);
mtlpp::CommandBuffer CreateCommandBuffer(void);
void CommitCommandBuffer(mtlpp::CommandBuffer& CommandBuffer);
void SubmitCommandBuffers(TArray<mtlpp::CommandBuffer> BufferList, uint32 Index, uint32 Count);
FMetalFence* CreateFence(ns::String const& Label) const;
void GetCommittedCommandBufferFences(TArray<mtlpp::CommandBufferFence>& Fences);
mtlpp::Device& GetDevice(void);
static mtlpp::ResourceOptions GetCompatibleResourceOptions(mtlpp::ResourceOptions Options);
static inline bool SupportsFeature(EMetalFeatures InFeature);
static inline bool SupportsSeparateMSAAAndResolveTarget();
(......)
private:
// 设备.
mtlpp::Device Device;
// 命令队列.
mtlpp::CommandQueue CommandQueue;
// 命令缓存区列表.(注意是数组的数组)
TArray<TArray<mtlpp::CommandBuffer>> CommandBuffers;
TLockFreePointerListLIFO<mtlpp::CommandBufferFence> CommandBufferFences;
uint64 ParallelCommandLists;
};
// Engine\Source\Runtime\Apple\MetalRHI\Private\MetalCommandList.h
class FMetalCommandList
{
public:
FMetalCommandList(FMetalCommandQueue& InCommandQueue, bool const bInImmediate);
~FMetalCommandList(void);
void Commit(mtlpp::CommandBuffer& Buffer, TArray<ns::Object<mtlpp::CommandBufferHandler>> CompletionHandlers, bool const bWait, bool const bIsLastCommandBuffer);
void Submit(uint32 Index, uint32 Count);
bool IsImmediate(void) const;
bool IsParallel(void) const;
void SetParallelIndex(uint32 Index, uint32 Num);
uint32 GetParallelIndex(void) const;
uint32 GetParallelNum(void) const;
(......)
private:
// 所属的FMetalCommandQueue.
FMetalCommandQueue& CommandQueue;
// 已提交的命令缓冲列表.
TArray<mtlpp::CommandBuffer> SubmittedBuffers;
};
相比其它现代图形API而言,FMetalDynamicRHI的概念和接口都简介多了。其UML图如下:
10.3.4 RHI体系总览
10.2和10.3章节详细阐述了RHI体系下的基础概念和继承体系,包含渲染层的资源、RHI层的资源、命令、上下文和动态RHI。还详细阐述了各个主流图形API下的具体实现和RHI抽象层的关联。
若抛开图形API的具体实现细节和众多的RHI具体子类,将RHI Context/CommandList/Command/Resource等的顶层概念汇总成UML关系图,则是如下模样:
下图是在上面的基础上细化了子类的UML:
若看不清,可点击下图放大:
10.4 RHI机制
本章将讲述RHI体系设计的运行机制和原理。
10.4.1 RHI命令执行
10.4.1.1 FRHICommandListExecutor
FRHICommandListExecutor负责将Renderer层的RHI中间指令转译(或直接调用)到目标平台的图形API,它在RHI体系中起着举足轻重的作用,定义如下:
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
class RHI_API FRHICommandListExecutor
{
public:
enum
{
DefaultBypass = PLATFORM_RHITHREAD_DEFAULT_BYPASS
};
FRHICommandListExecutor()
: bLatchedBypass(!!DefaultBypass)
, bLatchedUseParallelAlgorithms(false)
{
}
// 静态接口, 获取立即命令列表.
static inline FRHICommandListImmediate& GetImmediateCommandList();
// 静态接口, 获取立即异步计算命令列表.
static inline FRHIAsyncComputeCommandListImmediate& GetImmediateAsyncComputeCommandList();
// 执行命令列表.
void ExecuteList(FRHICommandListBase& CmdList);
void ExecuteList(FRHICommandListImmediate& CmdList);
void LatchBypass();
// 等待RHI线程栅栏.
static void WaitOnRHIThreadFence(FGraphEventRef& Fence);
// 是否绕过命令生成模式, 如果是, 则直接调用目标平台的图形API.
FORCEINLINE_DEBUGGABLE bool Bypass()
{
#if CAN_TOGGLE_COMMAND_LIST_BYPASS
return bLatchedBypass;
#else
return !!DefaultBypass;
#endif
}
// 是否使用并行算法.
FORCEINLINE_DEBUGGABLE bool UseParallelAlgorithms()
{
#if CAN_TOGGLE_COMMAND_LIST_BYPASS
return bLatchedUseParallelAlgorithms;
#else
return FApp::ShouldUseThreadingForPerformance() && !Bypass() && (GSupportsParallelRenderingTasksWithSeparateRHIThread || !IsRunningRHIInSeparateThread());
#endif
}
static void CheckNoOutstandingCmdLists();
static bool IsRHIThreadActive();
static bool IsRHIThreadCompletelyFlushed();
private:
// 内部执行.
void ExecuteInner(FRHICommandListBase& CmdList);
// 内部执行, 真正执行转译.
static void ExecuteInner_DoExecute(FRHICommandListBase& CmdList);
bool bLatchedBypass;
bool bLatchedUseParallelAlgorithms;
// 同步变量.
FThreadSafeCounter UIDCounter;
FThreadSafeCounter OutstandingCmdListCount;
// 立即模式的命令队列.
FRHICommandListImmediate CommandListImmediate;
// 立即模式的异步计算命令队列.
FRHIAsyncComputeCommandListImmediate AsyncComputeCmdListImmediate;
};
下面是FRHICommandListExecutor部分重要接口的实现代码:
// Engine\Source\Runtime\RHI\Private\RHICommandList.cpp
// 检测RHI线程是否激活状态.
bool FRHICommandListExecutor::IsRHIThreadActive()
{
// 是否异步提交.
bool bAsyncSubmit = CVarRHICmdAsyncRHIThreadDispatch.GetValueOnRenderThread() > 0;
// 1. 先检测是否存在未完成的子命令列表提交任务.
if (bAsyncSubmit)
{
if (RenderThreadSublistDispatchTask.GetReference() && RenderThreadSublistDispatchTask->IsComplete())
{
RenderThreadSublistDispatchTask = nullptr;
}
if (RenderThreadSublistDispatchTask.GetReference())
{
return true; // it might become active at any time
}
// otherwise we can safely look at RHIThreadTask
}
// 2. 再检测是否存在未完成的RHI线程任务.
if (RHIThreadTask.GetReference() && RHIThreadTask->IsComplete())
{
RHIThreadTask = nullptr;
PrevRHIThreadTask = nullptr;
}
return !!RHIThreadTask.GetReference();
}
// 检测RHI线程是否完全刷新了数据.
bool FRHICommandListExecutor::IsRHIThreadCompletelyFlushed()
{
if (IsRHIThreadActive() || GetImmediateCommandList().HasCommands())
{
return false;
}
if (RenderThreadSublistDispatchTask.GetReference() && RenderThreadSublistDispatchTask->IsComplete())
{
#if NEEDS_DEBUG_INFO_ON_PRESENT_HANG
bRenderThreadSublistDispatchTaskClearedOnRT = IsInActualRenderingThread();
bRenderThreadSublistDispatchTaskClearedOnGT = IsInGameThread();
#endif
RenderThreadSublistDispatchTask = nullptr;
}
return !RenderThreadSublistDispatchTask;
}
void FRHICommandListExecutor::ExecuteList(FRHICommandListImmediate& CmdList)
{
{
SCOPE_CYCLE_COUNTER(STAT_ImmedCmdListExecuteTime);
ExecuteInner(CmdList);
}
}
void FRHICommandListExecutor::ExecuteList(FRHICommandListBase& CmdList)
{
// 执行命令队列转换之前先刷新已有的命令.
if (IsInRenderingThread() && !GetImmediateCommandList().IsExecuting())
{
GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
}
// 内部执行.
ExecuteInner(CmdList);
}
void FRHICommandListExecutor::ExecuteInner(FRHICommandListBase& CmdList)
{
// 是否在渲染线程中.
bool bIsInRenderingThread = IsInRenderingThread();
// 是否在游戏线程中.
bool bIsInGameThread = IsInGameThread();
// 开启了专用的RHI线程.
if (IsRunningRHIInSeparateThread())
{
bool bAsyncSubmit = false;
ENamedThreads::Type RenderThread_Local = ENamedThreads::GetRenderThread_Local();
if (bIsInRenderingThread)
{
if (!bIsInGameThread && !FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
// 把所有需要传递的东西都处理掉.
FTaskGraphInterface::Get().ProcessThreadUntilIdle(RenderThread_Local);
}
// 检测子命令列表任务是否完成.
bAsyncSubmit = CVarRHICmdAsyncRHIThreadDispatch.GetValueOnRenderThread() > 0;
if (RenderThreadSublistDispatchTask.GetReference() && RenderThreadSublistDispatchTask->IsComplete())
{
RenderThreadSublistDispatchTask = nullptr;
if (bAsyncSubmit && RHIThreadTask.GetReference() && RHIThreadTask->IsComplete())
{
RHIThreadTask = nullptr;
PrevRHIThreadTask = nullptr;
}
}
// 检测RHI线程任务是否完成.
if (!bAsyncSubmit && RHIThreadTask.GetReference() && RHIThreadTask->IsComplete())
{
RHIThreadTask = nullptr;
PrevRHIThreadTask = nullptr;
}
}
if (CVarRHICmdUseThread.GetValueOnRenderThread() > 0 && bIsInRenderingThread && !bIsInGameThread)
{
// 交换前序和RT线程任务的列表.
FRHICommandList* SwapCmdList;
FGraphEventArray Prereq;
Exchange(Prereq, CmdList.RTTasks);
{
QUICK_SCOPE_CYCLE_COUNTER(STAT_FRHICommandListExecutor_SwapCmdLists);
SwapCmdList = new FRHICommandList(CmdList.GetGPUMask());
static_assert(sizeof(FRHICommandList) == sizeof(FRHICommandListImmediate), "We are memswapping FRHICommandList and FRHICommandListImmediate; they need to be swappable.");
SwapCmdList->ExchangeCmdList(CmdList);
CmdList.CopyContext(*SwapCmdList);
CmdList.GPUMask = SwapCmdList->GPUMask;
CmdList.InitialGPUMask = SwapCmdList->GPUMask;
CmdList.PSOContext = SwapCmdList->PSOContext;
CmdList.Data.bInsideRenderPass = SwapCmdList->Data.bInsideRenderPass;
CmdList.Data.bInsideComputePass = SwapCmdList->Data.bInsideComputePass;
}
// 提交任务.
QUICK_SCOPE_CYCLE_COUNTER(STAT_FRHICommandListExecutor_SubmitTasks);
// 创建FDispatchRHIThreadTask, 并将AllOutstandingTasks和RenderThreadSublistDispatchTask作为它的前序任务.
if (AllOutstandingTasks.Num() || RenderThreadSublistDispatchTask.GetReference())
{
Prereq.Append(AllOutstandingTasks);
AllOutstandingTasks.Reset();
if (RenderThreadSublistDispatchTask.GetReference())
{
Prereq.Add(RenderThreadSublistDispatchTask);
}
RenderThreadSublistDispatchTask = TGraphTask<FDispatchRHIThreadTask>::CreateTask(&Prereq, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(SwapCmdList, bAsyncSubmit);
}
// 创建FExecuteRHIThreadTask, 并将RHIThreadTask作为它的前序任务.
else
{
if (RHIThreadTask.GetReference())
{
Prereq.Add(RHIThreadTask);
}
PrevRHIThreadTask = RHIThreadTask;
RHIThreadTask = TGraphTask<FExecuteRHIThreadTask>::CreateTask(&Prereq, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(SwapCmdList);
}
if (CVarRHICmdForceRHIFlush.GetValueOnRenderThread() > 0 )
{
// 检测渲染线程是否死锁.
if (FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
// this is a deadlock. RT tasks must be done by now or they won't be done. We could add a third queue...
UE_LOG(LogRHI, Fatal, TEXT("Deadlock in FRHICommandListExecutor::ExecuteInner 2."));
}
// 检测RenderThreadSublistDispatchTask是否完成.
if (RenderThreadSublistDispatchTask.GetReference())
{
FTaskGraphInterface::Get().WaitUntilTaskCompletes(RenderThreadSublistDispatchTask, RenderThread_Local);
RenderThreadSublistDispatchTask = nullptr;
}
// 等待RHIThreadTask完成.
while (RHIThreadTask.GetReference())
{
FTaskGraphInterface::Get().WaitUntilTaskCompletes(RHIThreadTask, RenderThread_Local);
if (RHIThreadTask.GetReference() && RHIThreadTask->IsComplete())
{
RHIThreadTask = nullptr;
PrevRHIThreadTask = nullptr;
}
}
}
return;
}
// 执行RTTasks/RenderThreadSublistDispatchTask/RHIThreadTask等任务.
if (bIsInRenderingThread)
{
if (CmdList.RTTasks.Num())
{
if (FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
UE_LOG(LogRHI, Fatal, TEXT("Deadlock in FRHICommandListExecutor::ExecuteInner (RTTasks)."));
}
FTaskGraphInterface::Get().WaitUntilTasksComplete(CmdList.RTTasks, RenderThread_Local);
CmdList.RTTasks.Reset();
}
if (RenderThreadSublistDispatchTask.GetReference())
{
if (FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
// this is a deadlock. RT tasks must be done by now or they won't be done. We could add a third queue...
UE_LOG(LogRHI, Fatal, TEXT("Deadlock in FRHICommandListExecutor::ExecuteInner (RenderThreadSublistDispatchTask)."));
}
FTaskGraphInterface::Get().WaitUntilTaskCompletes(RenderThreadSublistDispatchTask, RenderThread_Local);
#if NEEDS_DEBUG_INFO_ON_PRESENT_HANG
bRenderThreadSublistDispatchTaskClearedOnRT = IsInActualRenderingThread();
bRenderThreadSublistDispatchTaskClearedOnGT = bIsInGameThread;
#endif
RenderThreadSublistDispatchTask = nullptr;
}
while (RHIThreadTask.GetReference())
{
if (FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
// this is a deadlock. RT tasks must be done by now or they won't be done. We could add a third queue...
UE_LOG(LogRHI, Fatal, TEXT("Deadlock in FRHICommandListExecutor::ExecuteInner (RHIThreadTask)."));
}
FTaskGraphInterface::Get().WaitUntilTaskCompletes(RHIThreadTask, RenderThread_Local);
if (RHIThreadTask.GetReference() && RHIThreadTask->IsComplete())
{
RHIThreadTask = nullptr;
PrevRHIThreadTask = nullptr;
}
}
}
}
// 非RHI专用线程.
else
{
if (bIsInRenderingThread && CmdList.RTTasks.Num())
{
ENamedThreads::Type RenderThread_Local = ENamedThreads::GetRenderThread_Local();
if (FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
// this is a deadlock. RT tasks must be done by now or they won't be done. We could add a third queue...
UE_LOG(LogRHI, Fatal, TEXT("Deadlock in FRHICommandListExecutor::ExecuteInner (RTTasks)."));
}
FTaskGraphInterface::Get().WaitUntilTasksComplete(CmdList.RTTasks, RenderThread_Local);
CmdList.RTTasks.Reset();
}
}
// 内部执行命令.
ExecuteInner_DoExecute(CmdList);
}
void FRHICommandListExecutor::ExecuteInner_DoExecute(FRHICommandListBase& CmdList)
{
FScopeCycleCounter ScopeOuter(CmdList.ExecuteStat);
CmdList.bExecuting = true;
check(CmdList.Context || CmdList.ComputeContext);
FMemMark Mark(FMemStack::Get());
// 设置多GPU的Mask.
#if WITH_MGPU
if (CmdList.Context != nullptr)
{
CmdList.Context->RHISetGPUMask(CmdList.InitialGPUMask);
}
if (CmdList.ComputeContext != nullptr && CmdList.ComputeContext != CmdList.Context)
{
CmdList.ComputeContext->RHISetGPUMask(CmdList.InitialGPUMask);
}
#endif
FRHICommandListDebugContext DebugContext;
FRHICommandListIterator Iter(CmdList);
// 统计执行信息.
#if STATS
bool bDoStats = CVarRHICmdCollectRHIThreadStatsFromHighLevel.GetValueOnRenderThread() > 0 && FThreadStats::IsCollectingData() && (IsInRenderingThread() || IsInRHIThread());
if (bDoStats)
{
while (Iter.HasCommandsLeft())
{
TStatIdData const* Stat = GCurrentExecuteStat.GetRawPointer();
FScopeCycleCounter Scope(GCurrentExecuteStat);
while (Iter.HasCommandsLeft() && Stat == GCurrentExecuteStat.GetRawPointer())
{
FRHICommandBase* Cmd = Iter.NextCommand();
Cmd->ExecuteAndDestruct(CmdList, DebugContext);
}
}
}
else
// 统计指定事件.
#elif ENABLE_STATNAMEDEVENTS
bool bDoStats = CVarRHICmdCollectRHIThreadStatsFromHighLevel.GetValueOnRenderThread() > 0 && GCycleStatsShouldEmitNamedEvents && (IsInRenderingThread() || IsInRHIThread());
if (bDoStats)
{
while (Iter.HasCommandsLeft())
{
PROFILER_CHAR const* Stat = GCurrentExecuteStat.StatString;
FScopeCycleCounter Scope(GCurrentExecuteStat);
while (Iter.HasCommandsLeft() && Stat == GCurrentExecuteStat.StatString)
{
FRHICommandBase* Cmd = Iter.NextCommand();
Cmd->ExecuteAndDestruct(CmdList, DebugContext);
}
}
}
else
#endif
// 不调试或不统计信息的版本.
{
// 循环所有命令, 执行并销毁之.
while (Iter.HasCommandsLeft())
{
FRHICommandBase* Cmd = Iter.NextCommand();
GCurrentCommand = Cmd;
Cmd->ExecuteAndDestruct(CmdList, DebugContext);
}
}
// 充值命令列表.
CmdList.Reset();
}
由此可知,FRHICommandListExecutor处理了复杂的各类任务,并且要判定任务的前序、等待、依赖关系,还有各个线程之间的依赖和等待关系。上述代码中涉及到了两个重要的任务类型:
// 派发RHI线程任务.
class FDispatchRHIThreadTask
{
FRHICommandListBase* RHICmdList; // 待派发的命令列表.
bool bRHIThread; // 是否在RHI线程中派发.
public:
FDispatchRHIThreadTask(FRHICommandListBase* InRHICmdList, bool bInRHIThread)
: RHICmdList(InRHICmdList)
, bRHIThread(bInRHIThread)
{
}
FORCEINLINE TStatId GetStatId() const;
static ESubsequentsMode::Type GetSubsequentsMode() { return ESubsequentsMode::TrackSubsequents; }
// 预期的线程由是否在RHI线程/是否在独立的RHI线程等变量决定.
ENamedThreads::Type GetDesiredThread()
{
return bRHIThread ? (IsRunningRHIInDedicatedThread() ? ENamedThreads::RHIThread : CPrio_RHIThreadOnTaskThreads.Get()) : ENamedThreads::GetRenderThread_Local();
}
void DoTask(ENamedThreads::Type CurrentThread, const FGraphEventRef& MyCompletionGraphEvent)
{
// 前序任务是RHIThreadTask.
FGraphEventArray Prereq;
if (RHIThreadTask.GetReference())
{
Prereq.Add(RHIThreadTask);
}
// 将当前任务放到PrevRHIThreadTask中.
PrevRHIThreadTask = RHIThreadTask;
// 创建FExecuteRHIThreadTask任务并赋值到RHIThreadTask.
RHIThreadTask = TGraphTask<FExecuteRHIThreadTask>::CreateTask(&Prereq, CurrentThread).ConstructAndDispatchWhenReady(RHICmdList);
}
};
// 执行RHI线程任务.
class FExecuteRHIThreadTask
{
FRHICommandListBase* RHICmdList;
public:
FExecuteRHIThreadTask(FRHICommandListBase* InRHICmdList)
: RHICmdList(InRHICmdList)
{
}
FORCEINLINE TStatId GetStatId() const;
static ESubsequentsMode::Type GetSubsequentsMode() { return ESubsequentsMode::TrackSubsequents; }
// 根据是否在专用的RHI线程而选择RHI或渲染线程.
ENamedThreads::Type GetDesiredThread()
{
return IsRunningRHIInDedicatedThread() ? ENamedThreads::RHIThread : CPrio_RHIThreadOnTaskThreads.Get();
}
void DoTask(ENamedThreads::Type CurrentThread, const FGraphEventRef& MyCompletionGraphEvent)
{
// 设置全局变量GRHIThreadId
if (IsRunningRHIInTaskThread())
{
GRHIThreadId = FPlatformTLS::GetCurrentThreadId();
}
// 执行RHI命令队列.
{
// 临界区, 保证线程访问安全.
FScopeLock Lock(&GRHIThreadOnTasksCritical);
FRHICommandListExecutor::ExecuteInner_DoExecute(*RHICmdList);
delete RHICmdList;
}
// 清空全局变量GRHIThreadId
if (IsRunningRHIInTaskThread())
{
GRHIThreadId = 0;
}
}
};
由上可知,在派发和转译命令队列时,可能在专用的RHI线程执行,也可能在渲染线程或工作线程执行。
10.4.1.2 GRHICommandList
GRHICommandList乍一看以为是FRHICommandListBase的实例,但实际类型是FRHICommandListExecutor。它的声明和实现如下:
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
extern RHI_API FRHICommandListExecutor GRHICommandList;
// Engine\Source\Runtime\RHI\Private\RHICommandList.cpp
RHI_API FRHICommandListExecutor GRHICommandList;
有关GRHICommandList的全局或静态接口如下:
FRHICommandListImmediate& FRHICommandListExecutor::GetImmediateCommandList()
{
return GRHICommandList.CommandListImmediate;
}
FRHIAsyncComputeCommandListImmediate& FRHICommandListExecutor::GetImmediateAsyncComputeCommandList()
{
return GRHICommandList.AsyncComputeCmdListImmediate;
}
在UE的渲染模块和RHI模块中拥有大量的GRHICommandList使用案例,取其中之一:
// Engine\Source\Runtime\Renderer\Private\DeferredShadingRenderer.cpp
void ServiceLocalQueue()
{
FTaskGraphInterface::Get().ProcessThreadUntilIdle(ENamedThreads::GetRenderThread_Local());
if (IsRunningRHIInSeparateThread())
{
FRHICommandListExecutor::GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
}
}
在RHI命令队列模块,除了涉及GRHICommandList,还涉及诸多全局的任务变量:
// Engine\Source\Runtime\RHI\Private\RHICommandList.cpp
static FGraphEventArray AllOutstandingTasks;
static FGraphEventArray WaitOutstandingTasks;
static FGraphEventRef RHIThreadTask;
static FGraphEventRef PrevRHIThreadTask;
static FGraphEventRef RenderThreadSublistDispatchTask;
它们的创建或添加任务的代码如下:
void FRHICommandListBase::QueueParallelAsyncCommandListSubmit(FGraphEventRef* AnyThreadCompletionEvents, ...)
{
(......)
if (Num && IsRunningRHIInSeparateThread())
{
(......)
// 创建FParallelTranslateSetupCommandList任务.
FGraphEventRef TranslateSetupCompletionEvent = TGraphTask<FParallelTranslateSetupCommandList>::CreateTask(&Prereq, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(CmdList, &RHICmdLists[0], Num, bIsPrepass);
QueueCommandListSubmit(CmdList);
// 添加到AllOutstandingTasks.
AllOutstandingTasks.Add(TranslateSetupCompletionEvent);
(......)
FGraphEventArray Prereq;
FRHICommandListBase** RHICmdLists = (FRHICommandListBase**)Alloc(sizeof(FRHICommandListBase*) * (1 + Last - Start), alignof(FRHICommandListBase*));
// 将所有外部任务AnyThreadCompletionEvents加入到对应的列表中.
for (int32 Index = Start; Index <= Last; Index++)
{
FGraphEventRef& AnyThreadCompletionEvent = AnyThreadCompletionEvents[Index];
FRHICommandList* CmdList = CmdLists[Index];
RHICmdLists[Index - Start] = CmdList;
if (AnyThreadCompletionEvent.GetReference())
{
Prereq.Add(AnyThreadCompletionEvent);
AllOutstandingTasks.Add(AnyThreadCompletionEvent);
WaitOutstandingTasks.Add(AnyThreadCompletionEvent);
}
}
(......)
// 并行转译任务FParallelTranslateCommandList.
FGraphEventRef TranslateCompletionEvent = TGraphTask<FParallelTranslateCommandList>::CreateTask(&Prereq, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(&RHICmdLists[0], 1 + Last - Start, ContextContainer, bIsPrepass);
AllOutstandingTasks.Add(TranslateCompletionEvent);
(......)
}
void FRHICommandListBase::QueueAsyncCommandListSubmit(FGraphEventRef& AnyThreadCompletionEvent, class FRHICommandList* CmdList)
{
(......)
// 处理外部任务AnyThreadCompletionEvent
if (AnyThreadCompletionEvent.GetReference())
{
if (IsRunningRHIInSeparateThread())
{
AllOutstandingTasks.Add(AnyThreadCompletionEvent);
}
WaitOutstandingTasks.Add(AnyThreadCompletionEvent);
}
(......)
}
class FDispatchRHIThreadTask
{
void DoTask(ENamedThreads::Type CurrentThread, const FGraphEventRef& MyCompletionGraphEvent)
{
(......)
// 创建RHI线程任务FExecuteRHIThreadTask.
PrevRHIThreadTask = RHIThreadTask;
RHIThreadTask = TGraphTask<FExecuteRHIThreadTask>::CreateTask(&Prereq, CurrentThread).ConstructAndDispatchWhenReady(RHICmdList);
}
};
class FParallelTranslateSetupCommandList
{
void DoTask(ENamedThreads::Type CurrentThread, const FGraphEventRef& MyCompletionGraphEvent)
{
(......)
// 创建并行转译任务FParallelTranslateCommandList.
FGraphEventRef TranslateCompletionEvent = TGraphTask<FParallelTranslateCommandList>::CreateTask(nullptr, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(&RHICmdLists[Start], 1 + Last - Start, ContextContainer, bIsPrepass);
MyCompletionGraphEvent->DontCompleteUntil(TranslateCompletionEvent);
// 利用RHICmdList的接口FRHICommandWaitForAndSubmitSubListParallel提交任务, 最终会进入AllOutstandingTasks和WaitOutstandingTasks.
ALLOC_COMMAND_CL(*RHICmdList, FRHICommandWaitForAndSubmitSubListParallel)(TranslateCompletionEvent, ContextContainer, EffectiveThreads, ThreadIndex++);
};
void FRHICommandListExecutor::ExecuteInner(FRHICommandListBase& CmdList)
{
(......)
if (IsRunningRHIInSeparateThread())
{
(......)
if (AllOutstandingTasks.Num() || RenderThreadSublistDispatchTask.GetReference())
{
(......)
// 创建渲染线程子命令派发(提交)任务FDispatchRHIThreadTask.
RenderThreadSublistDispatchTask = TGraphTask<FDispatchRHIThreadTask>::CreateTask(&Prereq, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(SwapCmdList, bAsyncSubmit);
}
else
{
(......)
PrevRHIThreadTask = RHIThreadTask;
// 创建渲染线程子命令转译任务FExecuteRHIThreadTask.
RHIThreadTask = TGraphTask<FExecuteRHIThreadTask>::CreateTask(&Prereq, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(SwapCmdList);
}
(......)
}
总结一下这些任务变量的作用:
任务变量 | 执行线程 | 描述 |
---|---|---|
AllOutstandingTasks | 渲染、RHI、工作 | 所有在处理或待处理的任务列表。类型是FParallelTranslateSetupCommandList、FParallelTranslateCommandList。 |
WaitOutstandingTasks | 渲染、RHI、工作 | 待处理的任务列表。类型是FParallelTranslateSetupCommandList、FParallelTranslateCommandList。 |
RHIThreadTask | RHI、工作 | 正在处理的RHI线程任务。类型是FExecuteRHIThreadTask。 |
PrevRHIThreadTask | RHI、工作 | 上一次处理的RHIThreadTask。类型是FExecuteRHIThreadTask。 |
RenderThreadSublistDispatchTask | 渲染、RHI、工作 | 正在派发(提交)的任务。类型是FDispatchRHIThreadTask。 |
10.4.1.3 D3D11命令执行
本节将研究UE4.26在PC平台的通用RHI及D3D11命令运行过程和机制。由于UE4.26在PC平台默认的RHI是D3D11,并且关键的几个控制台变量的默认值如下:
也就是说开启了命令跳过模式,并且禁用了RHI线程。在此情况下,FRHICommandList的某个接口被调用时,不会生成单独的FRHICommand,而是直接调用Context的方法。以FRHICommandList::DrawPrimitive为例:
class RHI_API FRHICommandList : public FRHIComputeCommandList
{
void DrawPrimitive(uint32 BaseVertexIndex, uint32 NumPrimitives, uint32 NumInstances)
{
// 默认情况下Bypass为1, 进入此分支.
if (Bypass())
{
// 直接调用图形API的上下文的对应方法.
GetContext().RHIDrawPrimitive(BaseVertexIndex, NumPrimitives, NumInstances);
return;
}
// 分配单独的FRHICommandDrawPrimitive命令.
ALLOC_COMMAND(FRHICommandDrawPrimitive)(BaseVertexIndex, NumPrimitives, NumInstances);
}
}
因此,在PC的默认图形API(D3D11)下,r.RHICmdBypass1且r.RHIThread.Enable0,FRHICommandList将直接调用图形API的上下文的接口,相当于同步调用图形API,此时的图形API运行于渲染线程(如果开启)。
接着将r.RHICmdBypass设为0,但保持r.RHIThread.Enable为0,此时不再直接调用Context的方法,而是通过生成一条条单独的FRHICommand,然后由FRHICommandList相关的对象执行。还是以FRHICommandList::DrawPrimitive为例,调用堆栈如下所示:
class RHI_API FRHICommandList : public FRHIComputeCommandList
{
void FRHICommandList::DrawPrimitive(uint32 BaseVertexIndex, uint32 NumPrimitives, uint32 NumInstances)
{
// 默认情况下Bypass为1, 进入此分支.
if (Bypass())
{
// 直接调用图形API的上下文的对应方法.
GetContext().RHIDrawPrimitive(BaseVertexIndex, NumPrimitives, NumInstances);
return;
}
// 分配单独的FRHICommandDrawPrimitive命令.
// ALLOC_COMMAND宏会调用AllocCommand接口.
ALLOC_COMMAND(FRHICommandDrawPrimitive)(BaseVertexIndex, NumPrimitives, NumInstances);
}
template <typename TCmd>
void* AllocCommand()
{
return AllocCommand(sizeof(TCmd), alignof(TCmd));
}
void* AllocCommand(int32 AllocSize, int32 Alignment)
{
FRHICommandBase* Result = (FRHICommandBase*) MemManager.Alloc(AllocSize, Alignment);
++NumCommands;
// CommandLink指向了上一个命令节点的Next.
*CommandLink = Result;
// 将CommandLink赋值为当前节点的Next.
CommandLink = &Result->Next;
return Result;
}
}
利用ALLOC_COMMAND分配的命令实例会进入FRHICommandListBase的命令链表,但此时并未执行,而是等待其它合适的时机执行,例如在FRHICommandListImmediate::ImmediateFlush。下面是执行FRHICommandList的调用堆栈:
由调用堆栈可以得知,在此情况下,命令执行的过程变得复杂起来,多了很多中间执行步骤。还是以FRHICommandList::DrawPrimitive为例,调用流程示意图如下:
上图的使用了宏INTERNAL_DECORATOR,其和相关宏的定义如下:
// Engine\Source\Runtime\RHI\Public\RHICommandListCommandExecutes.inl
#define INTERNAL_DECORATOR(Method) CmdList.GetContext().Method
#define INTERNAL_DECORATOR_COMPUTE(Method) CmdList.GetComputeContext().Method
相当于通过宏来调用CommandList的Context接口。
在RHI禁用(r.RHIThread.Enable==0)情况下,以上的调用在渲染线程执行:
接下来将r.RHIThread.Enable设为1,以开启RHI线程。此时运行命令的线程变成了RHI:
并且调用堆栈是从TaskGraph的RHI线程发起任务:
此时,命令执行的流程图如下:
上面流程图中,方角表示在渲染线程执行,而圆角在RHI线程执行。开启RHI线程后,将出现它的统计数据:
左:未开启RHI线程的统计数据;右:开启RHI线程后的统计数据。
下面绘制出开启或关闭Bypass和RHI线程的流程图(以调用D3D11的DrawPrimitive为例):
上面流程图中,方角表示在渲染线程中执行,圆角表示在RHI线程中执行。
10.4.2 ImmediateFlush
在章节10.3.3 FDynamicRHI中,提及了刷新类型(FlushType),是指EImmediateFlushType定义的类型:
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
namespace EImmediateFlushType
{
enum Type
{
WaitForOutstandingTasksOnly = 0, // 等待仅正在处理的任务完成.
DispatchToRHIThread, // 派发到RHI线程.
WaitForDispatchToRHIThread, // 等待派发到RHI线程.
FlushRHIThread, // 刷新RHI线程.
FlushRHIThreadFlushResources, // 刷新RHI线程和资源
FlushRHIThreadFlushResourcesFlushDeferredDeletes // 刷新RHI线程/资源和延迟删除.
};
};
EImmediateFlushType中各个值的区别在FRHICommandListImmediate::ImmediateFlush的实现代码中体现出来:
// Engine\Source\Runtime\RHI\Public\RHICommandList.inl
void FRHICommandListImmediate::ImmediateFlush(EImmediateFlushType::Type FlushType)
{
switch (FlushType)
{
// 等待任务完成.
case EImmediateFlushType::WaitForOutstandingTasksOnly:
{
WaitForTasks();
}
break;
// 派发RHI线程(执行命令队列)
case EImmediateFlushType::DispatchToRHIThread:
{
if (HasCommands())
{
GRHICommandList.ExecuteList(*this);
}
}
break;
// 等待RHI线程派发.
case EImmediateFlushType::WaitForDispatchToRHIThread:
{
if (HasCommands())
{
GRHICommandList.ExecuteList(*this);
}
WaitForDispatch();
}
break;
// 刷新RHI线程.
case EImmediateFlushType::FlushRHIThread:
{
// 派发并等待RHI线程.
if (HasCommands())
{
GRHICommandList.ExecuteList(*this);
}
WaitForDispatch();
// 等待RHI线程任务.
if (IsRunningRHIInSeparateThread())
{
WaitForRHIThreadTasks();
}
// 重置正在处理的任务列表.
WaitForTasks(true);
}
break;
case EImmediateFlushType::FlushRHIThreadFlushResources:
case EImmediateFlushType::FlushRHIThreadFlushResourcesFlushDeferredDeletes:
{
if (HasCommands())
{
GRHICommandList.ExecuteList(*this);
}
WaitForDispatch();
WaitForRHIThreadTasks();
WaitForTasks(true);
// 刷新管线状态缓存的资源.
PipelineStateCache::FlushResources();
// 刷新将要删除的资源.
FRHIResource::FlushPendingDeletes(FlushType == EImmediateFlushType::FlushRHIThreadFlushResourcesFlushDeferredDeletes);
}
break;
}
}
上面代码中涉及到了若干种处理和等待任务的接口,它们的实现如下:
// 等待任务完成.
void FRHICommandListBase::WaitForTasks(bool bKnownToBeComplete)
{
if (WaitOutstandingTasks.Num())
{
// 检测是否存在未完成的等待任务.
bool bAny = false;
for (int32 Index = 0; Index < WaitOutstandingTasks.Num(); Index++)
{
if (!WaitOutstandingTasks[Index]->IsComplete())
{
bAny = true;
break;
}
}
// 存在就利用TaskGraph的接口开启线程等待.
if (bAny)
{
ENamedThreads::Type RenderThread_Local = ENamedThreads::GetRenderThread_Local();
FTaskGraphInterface::Get().WaitUntilTasksComplete(WaitOutstandingTasks, RenderThread_Local);
}
// 重置等待任务列表.
WaitOutstandingTasks.Reset();
}
}
// 等待渲染线程派发完成.
void FRHICommandListBase::WaitForDispatch()
{
// 如果RenderThreadSublistDispatchTask已完成, 则置空.
if (RenderThreadSublistDispatchTask.GetReference() && RenderThreadSublistDispatchTask->IsComplete())
{
RenderThreadSublistDispatchTask = nullptr;
}
// RenderThreadSublistDispatchTask有未完成的任务.
while (RenderThreadSublistDispatchTask.GetReference())
{
ENamedThreads::Type RenderThread_Local = ENamedThreads::GetRenderThread_Local();
FTaskGraphInterface::Get().WaitUntilTaskCompletes(RenderThreadSublistDispatchTask, RenderThread_Local);
if (RenderThreadSublistDispatchTask.GetReference() && RenderThreadSublistDispatchTask->IsComplete())
{
RenderThreadSublistDispatchTask = nullptr;
}
}
}
// 等待RHI线程任务完成.
void FRHICommandListBase::WaitForRHIThreadTasks()
{
bool bAsyncSubmit = CVarRHICmdAsyncRHIThreadDispatch.GetValueOnRenderThread() > 0;
ENamedThreads::Type RenderThread_Local = ENamedThreads::GetRenderThread_Local();
// 相当于执行FRHICommandListBase::WaitForDispatch()
if (bAsyncSubmit)
{
if (RenderThreadSublistDispatchTask.GetReference() && RenderThreadSublistDispatchTask->IsComplete())
{
RenderThreadSublistDispatchTask = nullptr;
}
while (RenderThreadSublistDispatchTask.GetReference())
{
if (FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
while (!RenderThreadSublistDispatchTask->IsComplete())
{
FPlatformProcess::SleepNoStats(0);
}
}
else
{
FTaskGraphInterface::Get().WaitUntilTaskCompletes(RenderThreadSublistDispatchTask, RenderThread_Local);
}
if (RenderThreadSublistDispatchTask.GetReference() && RenderThreadSublistDispatchTask->IsComplete())
{
RenderThreadSublistDispatchTask = nullptr;
}
}
// now we can safely look at RHIThreadTask
}
// 如果RHI线程任务已完成, 则置空任务.
if (RHIThreadTask.GetReference() && RHIThreadTask->IsComplete())
{
RHIThreadTask = nullptr;
PrevRHIThreadTask = nullptr;
}
// 如果RHI线程有任务未完成, 则执行并等待.
while (RHIThreadTask.GetReference())
{
// 如果已在处理, 则用sleep(0)跳过此时间片.
if (FTaskGraphInterface::Get().IsThreadProcessingTasks(RenderThread_Local))
{
while (!RHIThreadTask->IsComplete())
{
FPlatformProcess::SleepNoStats(0);
}
}
// 任务尚未处理, 开始并等待之.
else
{
FTaskGraphInterface::Get().WaitUntilTaskCompletes(RHIThreadTask, RenderThread_Local);
}
// 如果RHI线程任务已完成, 则置空任务.
if (RHIThreadTask.GetReference() && RHIThreadTask->IsComplete())
{
RHIThreadTask = nullptr;
PrevRHIThreadTask = nullptr;
}
}
}
10.4.3 并行渲染
本篇开头也提到了在开启RHI线程的情况下,RHI线程负责将渲染线程Push进来的RHI中间指令转译到对应图形平台的GPU指令。如果渲染线程是并行生成的RHI中间指令,那么RHI线程也会并行转译。
在正式阐述并行渲染和转译之前,需要先了解一些基础概念和类型。
10.4.3.1 FParallelCommandListSet
FParallelCommandListSet的定义如下:
// Engine\Source\Runtime\Renderer\Private\SceneRendering.h
class FParallelCommandListSet
{
public:
// 所属的视图.
const FViewInfo& View;
// 父命令队列.
FRHICommandListImmediate& ParentCmdList;
// 场景RT快照.
FSceneRenderTargets* Snapshot;
TStatId ExecuteStat;
int32 Width;
int32 NumAlloc;
int32 MinDrawsPerCommandList;
// 是否平衡命令队列, 见r.RHICmdBalanceParallelLists
bool bBalanceCommands;
// see r.RHICmdSpewParallelListBalance
bool bSpewBalance;
// 命令队列列表.
TArray<FRHICommandList*,SceneRenderingAllocator> CommandLists;
// 同步事件.
TArray<FGraphEventRef,SceneRenderingAllocator> Events;
// 命令队列的绘制次数, 若是-1则未知. 高估总比没有好.
TArray<int32,SceneRenderingAllocator> NumDrawsIfKnown;
FParallelCommandListSet(TStatId InExecuteStat, const FViewInfo& InView, FRHICommandListImmediate& InParentCmdList, bool bInCreateSceneContext);
virtual ~FParallelCommandListSet();
// 获取数量.
int32 NumParallelCommandLists() const;
// 新建一个并行的命令队列.
FRHICommandList* NewParallelCommandList();
// 获取前序任务.
FORCEINLINE FGraphEventArray* GetPrereqs();
// 增加并行的命令队列.
void AddParallelCommandList(FRHICommandList* CmdList, FGraphEventRef& CompletionEvent, int32 InNumDrawsIfKnown = -1);
virtual void SetStateOnCommandList(FRHICommandList& CmdList) {}
// 等待任务完成.
static void WaitForTasks();
protected:
// 派发, 须由子类调用.
void Dispatch(bool bHighPriority = false);
// 分配新的命令队列.
FRHICommandList* AllocCommandList();
// 是否创建场景上下文.
bool bCreateSceneContext;
private:
void WaitForTasksInternal();
};
下面是FParallelCommandListSet的重要接口的实现代码:
// Engine\Source\Runtime\Renderer\Private\SceneRendering.cpp
FRHICommandList* FParallelCommandListSet::AllocCommandList()
{
NumAlloc++;
return new FRHICommandList(ParentCmdList.GetGPUMask());
}
void FParallelCommandListSet::Dispatch(bool bHighPriority)
{
ENamedThreads::Type RenderThread_Local = ENamedThreads::GetRenderThread_Local();
if (bSpewBalance)
{
// 等待之前的任务完成.
for (auto& Event : Events)
{
FTaskGraphInterface::Get().WaitUntilTaskCompletes(Event, RenderThread_Local);
}
}
// 是否并行转译.
bool bActuallyDoParallelTranslate = GRHISupportsParallelRHIExecute && CommandLists.Num() >= CVarRHICmdMinCmdlistForParallelSubmit.GetValueOnRenderThread();
if (bActuallyDoParallelTranslate)
{
int32 Total = 0;
bool bIndeterminate = false;
for (int32 Count : NumDrawsIfKnown)
{
// 不能确定这里面有多少, 假设应该进行平行转译.
if (Count < 0)
{
bIndeterminate = true;
break;
}
Total += Count;
}
// 命令队列数量太少, 不并行转译.
if (!bIndeterminate && Total < MinDrawsPerCommandList)
{
bActuallyDoParallelTranslate = false;
}
}
if (bActuallyDoParallelTranslate)
{
// 确保支持并行的RHI执行.
check(GRHISupportsParallelRHIExecute);
NumAlloc -= CommandLists.Num();
// 用父命令队列入队并行异步命令队列提交.
ParentCmdList.QueueParallelAsyncCommandListSubmit(&Events[0], bHighPriority, &CommandLists[0], &NumDrawsIfKnown[0], CommandLists.Num(), (MinDrawsPerCommandList * 4) / 3, bSpewBalance);
SetStateOnCommandList(ParentCmdList);
// 结束Pass渲染.
ParentCmdList.EndRenderPass();
}
else // 非并行模式.
{
for (int32 Index = 0; Index < CommandLists.Num(); Index++)
{
ParentCmdList.QueueAsyncCommandListSubmit(Events[Index], CommandLists[Index]);
NumAlloc--;
}
}
// 重置数据.
CommandLists.Reset();
Snapshot = nullptr;
Events.Reset();
// 等待渲染线程处理完成.
FTaskGraphInterface::Get().ProcessThreadUntilIdle(RenderThread_Local);
}
FParallelCommandListSet::~FParallelCommandListSet()
{
GOutstandingParallelCommandListSet = nullptr;
}
FRHICommandList* FParallelCommandListSet::NewParallelCommandList()
{
// 新建一个命令队列.
FRHICommandList* Result = AllocCommandList();
Result->ExecuteStat = ExecuteStat;
SetStateOnCommandList(*Result);
if (bCreateSceneContext)
{
FSceneRenderTargets& SceneContext = FSceneRenderTargets::Get(ParentCmdList);
// 创建场景RT快照.
if (!Snapshot)
{
Snapshot = SceneContext.CreateSnapshot(View);
}
// 将RT快照设置到命令队列上.
Snapshot->SetSnapshotOnCmdList(*Result);
}
return Result;
}
// 增加并行命令队列.
void FParallelCommandListSet::AddParallelCommandList(FRHICommandList* CmdList, FGraphEventRef& CompletionEvent, int32 InNumDrawsIfKnown)
{
// 增加命令队列.
CommandLists.Add(CmdList);
// 增加等待事件.
Events.Add(CompletionEvent);
// 增加数量.
NumDrawsIfKnown.Add(InNumDrawsIfKnown);
}
void FParallelCommandListSet::WaitForTasks()
{
if (GOutstandingParallelCommandListSet)
{
GOutstandingParallelCommandListSet->WaitForTasksInternal();
}
}
void FParallelCommandListSet::WaitForTasksInternal()
{
// 收集等待处理的事件.
FGraphEventArray WaitOutstandingTasks;
for (int32 Index = 0; Index < Events.Num(); Index++)
{
if (!Events[Index]->IsComplete())
{
WaitOutstandingTasks.Add(Events[Index]);
}
}
// 如果有正在处理的任务, 则等待其完成.
if (WaitOutstandingTasks.Num())
{
ENamedThreads::Type RenderThread_Local = ENamedThreads::GetRenderThread_Local();
FTaskGraphInterface::Get().WaitUntilTasksComplete(WaitOutstandingTasks, RenderThread_Local);
}
}
FParallelCommandListSet拥有以下子类,以满足不同Pass或场合的并行渲染逻辑:
- FAnisotropyPassParallelCommandListSet:各项异性Pass的并行渲染命令队列集合。
- FPrePassParallelCommandListSet:提前深度Pass的并行渲染命令队列集合。
- FShadowParallelCommandListSet:阴影渲染的并行渲染命令队列集合。
- FRDGParallelCommandListSet:RDG系统的并行渲染命令队列集合。
下面以FPrePassParallelCommandListSet和FShadowParallelCommandListSet为剖析对象:
// Engine\Source\Runtime\Renderer\Private\DepthRendering.cpp
class FPrePassParallelCommandListSet : public FParallelCommandListSet
{
public:
FPrePassParallelCommandListSet(FRHICommandListImmediate& InParentCmdList, const FSceneRenderer& InSceneRenderer, const FViewInfo& InView, bool bInCreateSceneContext)
: FParallelCommandListSet(GET_STATID(STAT_CLP_Prepass), InView, InParentCmdList, bInCreateSceneContext)
, SceneRenderer(InSceneRenderer)
{
}
virtual ~FPrePassParallelCommandListSet()
{
// 在析构函数内派发命令列表.
Dispatch(true);
}
// 在命令列表上设置状态.
virtual void SetStateOnCommandList(FRHICommandList& CmdList) override
{
FParallelCommandListSet::SetStateOnCommandList(CmdList);
FSceneRenderTargets::Get(CmdList).BeginRenderingPrePass(CmdList, false);
SetupPrePassView(CmdList, View, &SceneRenderer);
}
private:
const FSceneRenderer& SceneRenderer;
};
class FShadowParallelCommandListSet : public FParallelCommandListSet
{
public:
FShadowParallelCommandListSet(
FRHICommandListImmediate& InParentCmdList,
const FViewInfo& InView,
bool bInCreateSceneContext,
FProjectedShadowInfo& InProjectedShadowInfo,
FBeginShadowRenderPassFunction InBeginShadowRenderPass)
: FParallelCommandListSet(GET_STATID(STAT_CLP_Shadow), InView, InParentCmdList, bInCreateSceneContext)
, ProjectedShadowInfo(InProjectedShadowInfo)
, BeginShadowRenderPass(InBeginShadowRenderPass)
{
bBalanceCommands = false;
}
virtual ~FShadowParallelCommandListSet()
{
// 在析构函数内派发命令列表.
Dispatch();
}
virtual void SetStateOnCommandList(FRHICommandList& CmdList) override
{
FParallelCommandListSet::SetStateOnCommandList(CmdList);
BeginShadowRenderPass(CmdList, false);
ProjectedShadowInfo.SetStateForView(CmdList);
}
private:
// 投射阴影信息.
FProjectedShadowInfo& ProjectedShadowInfo;
// 开始阴影渲染pass函数.
FBeginShadowRenderPassFunction BeginShadowRenderPass;
// 阴影深度渲染模式.
EShadowDepthRenderMode RenderMode;
};
使用以上的逻辑比较简单,以PrePass为例:
// Engine\Source\Runtime\Renderer\Private\DepthRendering.cpp
bool FDeferredShadingSceneRenderer::RenderPrePassViewParallel(const FViewInfo& View, FRHICommandListImmediate& ParentCmdList, TFunctionRef<void()> AfterTasksAreStarted, bool bDoPrePre)
{
bool bDepthWasCleared = false;
{
// 构造FPrePassParallelCommandListSet实例.
FPrePassParallelCommandListSet ParallelCommandListSet(ParentCmdList, *this, View,
CVarRHICmdFlushRenderThreadTasksPrePass.GetValueOnRenderThread() == 0 && CVarRHICmdFlushRenderThreadTasks.GetValueOnRenderThread() == 0);
// 调用FParallelMeshDrawCommandPass::DispatchDraw.
View.ParallelMeshDrawCommandPasses[EMeshPass::DepthPass].DispatchDraw(&ParallelCommandListSet, ParentCmdList);
if (bDoPrePre)
{
bDepthWasCleared = PreRenderPrePass(ParentCmdList);
}
}
if (bDoPrePre)
{
AfterTasksAreStarted();
}
return bDepthWasCleared;
}
// Engine\Source\Runtime\Renderer\Private\MeshDrawCommands.cpp
void FParallelMeshDrawCommandPass::DispatchDraw(FParallelCommandListSet* ParallelCommandListSet, FRHICommandList& RHICmdList) const
{
if (MaxNumDraws <= 0)
{
return;
}
FRHIVertexBuffer* PrimitiveIdsBuffer = PrimitiveIdVertexBufferPoolEntry.BufferRHI;
const int32 BasePrimitiveIdsOffset = 0;
// 并行模式.
if (ParallelCommandListSet)
{
if (TaskContext.bUseGPUScene)
{
// 在完成FMeshDrawCommandPassSetupTask后,RHI线程将上传PrimitiveIdVertexBuffer命令.
FRHICommandListImmediate &RHICommandList = GetImmediateCommandList_ForRenderCommand();
if (TaskEventRef.IsValid())
{
RHICommandList.AddDispatchPrerequisite(TaskEventRef);
}
RHICommandList.EnqueueLambda([
VertexBuffer = PrimitiveIdsBuffer,
VertexBufferData = TaskContext.PrimitiveIdBufferData,
VertexBufferDataSize = TaskContext.PrimitiveIdBufferDataSize,
PrimitiveIdVertexBufferPoolEntry = PrimitiveIdVertexBufferPoolEntry](FRHICommandListImmediate& CmdList)
{
// Upload vertex buffer data.
void* RESTRICT Data = (void* RESTRICT)CmdList.LockVertexBuffer(VertexBuffer, 0, VertexBufferDataSize, RLM_WriteOnly);
FMemory::Memcpy(Data, VertexBufferData, VertexBufferDataSize);
CmdList.UnlockVertexBuffer(VertexBuffer);
FMemory::Free(VertexBufferData);
});
RHICommandList.RHIThreadFence(true);
bPrimitiveIdBufferDataOwnedByRHIThread = true;
}
const ENamedThreads::Type RenderThread = ENamedThreads::GetRenderThread();
// 处理前序任务
FGraphEventArray Prereqs;
if (ParallelCommandListSet->GetPrereqs())
{
Prereqs.Append(*ParallelCommandListSet->GetPrereqs());
}
if (TaskEventRef.IsValid())
{
Prereqs.Add(TaskEventRef);
}
// 基于NumEstimatedDraws将工作平均分配给可用的task graph工作线程.
// 每个任务将根据FVisibleMeshDrawCommandProcessTask结果调整它的工作范围.
const int32 NumThreads = FMath::Min<int32>(FTaskGraphInterface::Get().GetNumWorkerThreads(), ParallelCommandListSet->Width);
const int32 NumTasks = FMath::Min<int32>(NumThreads, FMath::DivideAndRoundUp(MaxNumDraws, ParallelCommandListSet->MinDrawsPerCommandList));
const int32 NumDrawsPerTask = FMath::DivideAndRoundUp(MaxNumDraws, NumTasks);
// 建立NumTasks个FRHICommandList, 添加到ParallelCommandListSet.
for (int32 TaskIndex = 0; TaskIndex < NumTasks; TaskIndex++)
{
const int32 StartIndex = TaskIndex * NumDrawsPerTask;
const int32 NumDraws = FMath::Min(NumDrawsPerTask, MaxNumDraws - StartIndex);
checkSlow(NumDraws > 0);
// 新建命令队列.
FRHICommandList* CmdList = ParallelCommandListSet->NewParallelCommandList();
// 创建任务FDrawVisibleMeshCommandsAnyThreadTask, 获得事件对象.
FGraphEventRef AnyThreadCompletionEvent = TGraphTask<FDrawVisibleMeshCommandsAnyThreadTask>::CreateTask(&Prereqs, RenderThread)
.ConstructAndDispatchWhenReady(*CmdList, TaskContext.MeshDrawCommands, TaskContext.MinimalPipelineStatePassSet, PrimitiveIdsBuffer, BasePrimitiveIdsOffset, TaskContext.bDynamicInstancing, TaskContext.InstanceFactor, TaskIndex, NumTasks);
// 添加命令/事件等数据到ParallelCommandListSet.
ParallelCommandListSet->AddParallelCommandList(CmdList, AnyThreadCompletionEvent, NumDraws);
}
}
else // 非并行模式.
{
(......)
}
}
以上可以知道,FParallelMeshDrawCommandPass::DispatchDraw调用之后,创建若干个FRHICommandList、FDrawVisibleMeshCommandsAnyThreadTask任务和任务同步事件,然后将它们全部加入到ParallelCommandListSet的列表中。这样,当ParallelCommandListSet被析构时,就可以真正地派发命令队列。
10.4.3.2 QueueParallelAsyncCommandListSubmit
上一小节调用FParallelCommandListSet::Dispatch之后,会进入FRHICommandListBase::QueueParallelAsyncCommandListSubmit的接口:
void FRHICommandListBase::QueueParallelAsyncCommandListSubmit(FGraphEventRef* AnyThreadCompletionEvents, bool bIsPrepass, FRHICommandList** CmdLists, int32* NumDrawsIfKnown, int32 Num, int32 MinDrawsPerTranslate, bool bSpewMerge)
{
if (IsRunningRHIInSeparateThread())
{
// 在提交并行构建的子列表之前,执行立即命令列表上排队的所有命令.
FRHICommandListImmediate& ImmediateCommandList = FRHICommandListExecutor::GetImmediateCommandList();
ImmediateCommandList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
// 清空栅栏.
if (RHIThreadBufferLockFence.GetReference() && RHIThreadBufferLockFence->IsComplete())
{
RHIThreadBufferLockFence = nullptr;
}
}
#if !UE_BUILD_SHIPPING
// 处理前先刷新命令,这样就能知道这个平行集打碎了什么东西,或是之前有什么东西.
if (CVarRHICmdFlushOnQueueParallelSubmit.GetValueOnRenderThread())
{
CSV_SCOPED_TIMING_STAT(RHITFlushes, QueueParallelAsyncCommandListSubmit);
FRHICommandListExecutor::GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::FlushRHIThread);
}
#endif
// 确保开启了RHI线程.
if (Num && IsRunningRHIInSeparateThread())
{
static const auto ICVarRHICmdBalanceParallelLists = IConsoleManager::Get().FindTConsoleVariableDataInt(TEXT("r.RHICmdBalanceParallelLists"));
// r.RHICmdBalanceParallelLists==0 且 GRHISupportsParallelRHIExecute==true 且 使用延迟上下文.
// 不平衡命令队列提交模式.
if (ICVarRHICmdBalanceParallelLists->GetValueOnRenderThread() == 0 && CVarRHICmdBalanceTranslatesAfterTasks.GetValueOnRenderThread() > 0 && GRHISupportsParallelRHIExecute && CVarRHICmdUseDeferredContexts.GetValueOnAnyThread() > 0)
{
// 处理前序任务.
FGraphEventArray Prereq;
FRHICommandListBase** RHICmdLists = (FRHICommandListBase**)Alloc(sizeof(FRHICommandListBase*) * Num, alignof(FRHICommandListBase*));
for (int32 Index = 0; Index < Num; Index++)
{
FGraphEventRef& AnyThreadCompletionEvent = AnyThreadCompletionEvents[Index];
FRHICommandList* CmdList = CmdLists[Index];
RHICmdLists[Index] = CmdList;
if (AnyThreadCompletionEvent.GetReference())
{
Prereq.Add(AnyThreadCompletionEvent);
WaitOutstandingTasks.Add(AnyThreadCompletionEvent);
}
}
// 确保在开始任何并行转译之前,所有旧的缓冲区锁都已完成.
if (RHIThreadBufferLockFence.GetReference())
{
Prereq.Add(RHIThreadBufferLockFence);
}
// 新建FRHICommandList.
FRHICommandList* CmdList = new FRHICommandList(GetGPUMask());
// 拷贝渲染线程上下文.
CmdList->CopyRenderThreadContexts(*this);
// 创建设置转译任务(FParallelTranslateSetupCommandList).
FGraphEventRef TranslateSetupCompletionEvent = TGraphTask<FParallelTranslateSetupCommandList>::CreateTask(&Prereq, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(CmdList, &RHICmdLists[0], Num, bIsPrepass);
// 入队命令队列提交.
QueueCommandListSubmit(CmdList);
// 添加设置转译事件到列表.
AllOutstandingTasks.Add(TranslateSetupCompletionEvent);
// 避免在异步命令列表之后的东西被绑定到它.
if (IsRunningRHIInSeparateThread())
{
FRHICommandListExecutor::GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
}
// 刷新命令到RHI线程.
#if !UE_BUILD_SHIPPING
if (CVarRHICmdFlushOnQueueParallelSubmit.GetValueOnRenderThread())
{
FRHICommandListExecutor::GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::FlushRHIThread);
}
#endif
return;
}
// 平衡命令队列提交模式.
IRHICommandContextContainer* ContextContainer = nullptr;
bool bMerge = !!CVarRHICmdMergeSmallDeferredContexts.GetValueOnRenderThread();
int32 EffectiveThreads = 0;
int32 Start = 0;
int32 ThreadIndex = 0;
if (GRHISupportsParallelRHIExecute && CVarRHICmdUseDeferredContexts.GetValueOnAnyThread() > 0)
{
// 由于需要提前知道作业的数量,因此运行了两次合并逻辑.(可改进)
while (Start < Num)
{
int32 Last = Start;
int32 DrawCnt = NumDrawsIfKnown[Start];
if (bMerge && DrawCnt >= 0)
{
while (Last < Num - 1 && NumDrawsIfKnown[Last + 1] >= 0 && DrawCnt + NumDrawsIfKnown[Last + 1] <= MinDrawsPerTranslate)
{
Last++;
DrawCnt += NumDrawsIfKnown[Last];
}
}
check(Last >= Start);
Start = Last + 1;
EffectiveThreads++;
}
Start = 0;
ContextContainer = RHIGetCommandContextContainer(ThreadIndex, EffectiveThreads, GetGPUMask());
}
if (ContextContainer)
{
// 又一次合并操作.
while (Start < Num)
{
int32 Last = Start;
int32 DrawCnt = NumDrawsIfKnown[Start];
int32 TotalMem = bSpewMerge ? CmdLists[Start]->GetUsedMemory() : 0;
if (bMerge && DrawCnt >= 0)
{
while (Last < Num - 1 && NumDrawsIfKnown[Last + 1] >= 0 && DrawCnt + NumDrawsIfKnown[Last + 1] <= MinDrawsPerTranslate)
{
Last++;
DrawCnt += NumDrawsIfKnown[Last];
TotalMem += bSpewMerge ? CmdLists[Start]->GetUsedMemory() : 0;
}
}
// 后面的逻辑和非平衡模式比较相似, 省略.
(......)
return;
}
}
// 非并行模式.
(......)
}
以上可知,开启并行命令队列提交需要满足以下条件:
- 开启了RHI线程,即IsRunningRHIInSeparateThread()为true。
- 当前使用的图形API支持并行执行,即GRHISupportsParallelRHIExecute要为true。
- 开启了延迟上下文,即CVarRHICmdUseDeferredContexts不为0。
无论是哪个图形API,都需要指定一个主CommandList(即ParentCommandList),以便调用它的QueueParallelAsyncCommandListSubmit提交设置命令队列的任务。上面提交到RHI线程的任务对象是FParallelTranslateSetupCommandList,由下一小节阐述。
10.4.3.3 FParallelTranslateSetupCommandList
FParallelTranslateSetupCommandList用于建立并行(或串行)提交子命令队列的任务,定义如下:
class FParallelTranslateSetupCommandList
{
// 用于提交子命令列表的父命令列表.
FRHICommandList* RHICmdList;
// 待提交的子命令队列列表.
FRHICommandListBase** RHICmdLists;
int32 NumCommandLists;
bool bIsPrepass;
int32 MinSize;
int32 MinCount;
public:
FParallelTranslateSetupCommandList(FRHICommandList* InRHICmdList, FRHICommandListBase** InRHICmdLists, int32 InNumCommandLists, bool bInIsPrepass)
: RHICmdList(InRHICmdList)
, RHICmdLists(InRHICmdLists)
, NumCommandLists(InNumCommandLists)
, bIsPrepass(bInIsPrepass)
{
// 单个子命令队列的最小尺寸.
MinSize = CVarRHICmdMinCmdlistSizeForParallelTranslate.GetValueOnRenderThread() * 1024;
MinCount = CVarRHICmdMinCmdlistForParallelTranslate.GetValueOnRenderThread();
}
static FORCEINLINE TStatId GetStatId();
// 预期的线程.
static FORCEINLINE ENamedThreads::Type GetDesiredThread()
{
return CPrio_FParallelTranslateSetupCommandList.Get();
}
static FORCEINLINE ESubsequentsMode::Type GetSubsequentsMode() { return ESubsequentsMode::TrackSubsequents; }
// 执行设置任务.
void DoTask(ENamedThreads::Type CurrentThread, const FGraphEventRef& MyCompletionGraphEvent)
{
TArray<int32, TInlineAllocator<64> > Sizes;
Sizes.Reserve(NumCommandLists);
for (int32 Index = 0; Index < NumCommandLists; Index++)
{
Sizes.Add(RHICmdLists[Index]->GetUsedMemory());
}
int32 EffectiveThreads = 0;
int32 Start = 0;
// 合并绘制指令, 计算所需的线程数量.
while (Start < NumCommandLists)
{
int32 Last = Start;
int32 DrawCnt = Sizes[Start];
while (Last < NumCommandLists - 1 && DrawCnt + Sizes[Last + 1] <= MinSize)
{
Last++;
DrawCnt += Sizes[Last];
}
check(Last >= Start);
Start = Last + 1;
EffectiveThreads++;
}
// 如果需要的线程数量太少, 则串行提交子命令队列.
if (EffectiveThreads < MinCount)
{
FGraphEventRef Nothing;
for (int32 Index = 0; Index < NumCommandLists; Index++)
{
FRHICommandListBase* CmdList = RHICmdLists[Index];
// 使用了ALLOC_COMMAND_CL分配子命令队列提交接口.
ALLOC_COMMAND_CL(*RHICmdList, FRHICommandWaitForAndSubmitSubList)(Nothing, CmdList);
#if WITH_MGPU
ALLOC_COMMAND_CL(*RHICmdList, FRHICommandSetGPUMask)(RHICmdList->GetGPUMask());
#endif
}
}
// 并行提交.
else
{
Start = 0;
int32 ThreadIndex = 0;
// 合并数量太少的命令队列.
while (Start < NumCommandLists)
{
int32 Last = Start;
int32 DrawCnt = Sizes[Start];
while (Last < NumCommandLists - 1 && DrawCnt + Sizes[Last + 1] <= MinSize)
{
Last++;
DrawCnt += Sizes[Last];
}
// 获取ContextContainer
IRHICommandContextContainer* ContextContainer = RHIGetCommandContextContainer(ThreadIndex, EffectiveThreads, RHICmdList->GetGPUMask());
// 创建并行转译任务FParallelTranslateCommandList.
FGraphEventRef TranslateCompletionEvent = TGraphTask<FParallelTranslateCommandList>::CreateTask(nullptr, ENamedThreads::GetRenderThread()).ConstructAndDispatchWhenReady(&RHICmdLists[Start], 1 + Last - Start, ContextContainer, bIsPrepass);
// 此任务结束前须确保转译任务完成.
MyCompletionGraphEvent->DontCompleteUntil(TranslateCompletionEvent);
// 调用RHICmdList的FRHICommandWaitForAndSubmitSubListParallel接口.
ALLOC_COMMAND_CL(*RHICmdList, FRHICommandWaitForAndSubmitSubListParallel)(TranslateCompletionEvent, ContextContainer, EffectiveThreads, ThreadIndex++);
Start = Last + 1;
}
check(EffectiveThreads == ThreadIndex);
}
}
};
以上代码中,可以补充几点:
-
如果命令数量太少,所需的线程数量过少,直接使用串行转译接口FRHICommandWaitForAndSubmitSubList。
-
并行逻辑分支中,RHIGetCommandContextContainer从具体的RHI子类中获取上下文容器,只在D3D12、Vulkan、Metal等现代图形平台中有实现,其它图形平台皆返回nullptr。
-
每个线程会提交1~N个子命令队列,以确保它们的绘制命令总数不少于MinSize,提升每个线程的提交效率。
-
每个线程会创建一个转译任务FParallelTranslateCommandList,然后利用RHICmdList的FRHICommandWaitForAndSubmitSubListParallel取等待子命令列表的并行提交。
-
注意FParallelTranslateSetupCommandList的预期线程由CPrio_FParallelTranslateSetupCommandList决定:
FAutoConsoleTaskPriority CPrio_FParallelTranslateSetupCommandList // 控制台名称. TEXT("TaskGraph.TaskPriorities.ParallelTranslateSetupCommandList"), // 描述. TEXT("Task and thread priority for FParallelTranslateSetupCommandList."), // 如果有高优先级的线程, 使用之. ENamedThreads::HighThreadPriority, // 使用高任务优先级. ENamedThreads::HighTaskPriority, // 如果没有高优先级的线程, 则使用普遍优先级的线程, 但使用高任务优先级代替之. ENamedThreads::HighTaskPriority );
因此可知,设置转译的任务会被TaskGraph系统优先执行,但发起设置转译任务的线程还是渲染线程而非RHI线程。
10.4.3.4 FParallelTranslateCommandList
FParallelTranslateCommandList便是真正地转译命令队列,它的定义如下:
class FParallelTranslateCommandList
{
// 待转译的命令列表.
FRHICommandListBase** RHICmdLists;
// 需转译的命令列表数量.
int32 NumCommandLists;
// 上下文容器.
IRHICommandContextContainer* ContextContainer;
// 是否提前深度pass.
bool bIsPrepass;
public:
FParallelTranslateCommandList(FRHICommandListBase** InRHICmdLists, int32 InNumCommandLists, IRHICommandContextContainer* InContextContainer, bool bInIsPrepass)
: RHICmdLists(InRHICmdLists)
, NumCommandLists(InNumCommandLists)
, ContextContainer(InContextContainer)
, bIsPrepass(bInIsPrepass)
{
check(RHICmdLists && ContextContainer && NumCommandLists);
}
static FORCEINLINE TStatId GetStatId();
// 预期的线程, 根据是否Prepass而定.
ENamedThreads::Type GetDesiredThread()
{
return bIsPrepass ? CPrio_FParallelTranslateCommandListPrepass.Get() : CPrio_FParallelTranslateCommandList.Get();
}
static ESubsequentsMode::Type GetSubsequentsMode() { return ESubsequentsMode::TrackSubsequents; }
// 执行任务.
void DoTask(ENamedThreads::Type CurrentThread, const FGraphEventRef& MyCompletionGraphEvent)
{
IRHICommandContext* Context = ContextContainer->GetContext();
for (int32 Index = 0; Index < NumCommandLists; Index++)
{
// 设置子命令队列的上下文.
RHICmdLists[Index]->SetContext(Context);
// 删除子命令队列.
delete RHICmdLists[Index];
}
// 清理上下文.
ContextContainer->FinishContext();
}
};
上面的代码需要补充几点说明:
-
GetDesiredThread根据是否prepass由两个控制台遍历决定:
FAutoConsoleTaskPriority CPrio_FParallelTranslateCommandListPrepass( TEXT("TaskGraph.TaskPriorities.ParallelTranslateCommandListPrepass"), TEXT("Task and thread priority for FParallelTranslateCommandList for the prepass, which we would like to get to the GPU asap."), ENamedThreads::NormalThreadPriority, ENamedThreads::HighTaskPriority ); FAutoConsoleTaskPriority CPrio_FParallelTranslateCommandList( TEXT("TaskGraph.TaskPriorities.ParallelTranslateCommandList"), TEXT("Task and thread priority for FParallelTranslateCommandList."), ENamedThreads::NormalThreadPriority, ENamedThreads::NormalTaskPriority );
由此可知,如果是prepass,使用普通优先级的线程但高任务优先级,其它pass则使用普通优先级的线程和普通的任务优先级。
-
DoTask逻辑非常简单,给命令队列设置上下文,然后将命令队列删除,最后清理上下文。不过这里有个疑问,转译任务在哪里执行?几番盘查之后,发现是在FRHICommandListBase的析构函数之中,调用堆栈如下:
FRHICommandListBase::~FRHICommandListBase() { // 刷新命令列表. Flush(); GRHICommandList.OutstandingCmdListCount.Decrement(); } void FRHICommandListBase::Flush() { // 如果存在命令. if (HasCommands()) { check(!IsImmediate()); // 用全局命令列表执行之. GRHICommandList的类型是FRHICommandListExecutor. GRHICommandList.ExecuteList(*this); } } void FRHICommandListExecutor::ExecuteList(FRHICommandListBase& CmdList) { if (IsInRenderingThread() && !GetImmediateCommandList().IsExecuting()) { GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::DispatchToRHIThread); } ExecuteInner(CmdList); } void FRHICommandListExecutor::ExecuteInner(FRHICommandListBase& CmdList) { (......) }
到了
FRHICommandListExecutor::ExecuteInner
这一步,就交给FRHICommandListExecutor处理了,具体过程和解析见10.4.1 RHI命令执行。
不过再次强调的是,需要图形API支持并行提交和转译,才能开启真正的并行渲染,否则就只能按照普通的任务放到渲染线程执行。
10.4.4 Pass渲染
10.4.4.1 普通Pass渲染
普通Pass的渲染涉及到以下接口和类型:
// Engine\Source\Runtime\RHI\Public\RHIResources.h
// 渲染通道信息.
struct FRHIRenderPassInfo
{
// 渲染纹理信息.
struct FColorEntry
{
FRHITexture* RenderTarget;
FRHITexture* ResolveTarget;
int32 ArraySlice;
uint8 MipIndex;
ERenderTargetActions Action;
};
FColorEntry ColorRenderTargets[MaxSimultaneousRenderTargets];
// 深度模板信息.
struct FDepthStencilEntry
{
FRHITexture* DepthStencilTarget;
FRHITexture* ResolveTarget;
EDepthStencilTargetActions Action;
FExclusiveDepthStencil ExclusiveDepthStencil;
};
FDepthStencilEntry DepthStencilRenderTarget;
// 解析参数.
FResolveParams ResolveParameters;
// 部分RHI可以使用纹理来控制不同区域的采样和/或阴影分辨率
FTextureRHIRef FoveationTexture = nullptr;
// 部分RHI需要一个提示,遮挡查询将在这个渲染通道中使用
uint32 NumOcclusionQueries = 0;
bool bOcclusionQueries = false;
// 部分RHI需要知道,在为部分资源转换生成mip映射的情况下,这个渲染通道是否将读取和写入相同的纹理.
bool bGeneratingMips = false;
// 如果这个renderpass应该是多视图,则需要多少视图.
uint8 MultiViewCount = 0;
// 部分RHI的提示,渲染通道将有特定的子通道.
ESubpassHint SubpassHint = ESubpassHint::None;
// 是否太多UAV.
bool bTooManyUAVs = false;
bool bIsMSAA = false;
// 不同的构造函数.
// Color, no depth, optional resolve, optional mip, optional array slice
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveRT = nullptr, uint32 InMipIndex = 0, int32 InArraySlice = -1);
// Color MRTs, no depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction);
// Color MRTs, no depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveTargets[]);
// Color MRTs and depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color MRTs and depth
explicit FRHIRenderPassInfo(int32 NumColorRTs, FRHITexture* ColorRTs[], ERenderTargetActions ColorAction, FRHITexture* ResolveRTs[], FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Depth, no color
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Depth, no color, occlusion queries
explicit FRHIRenderPassInfo(FRHITexture* DepthRT, uint32 InNumOcclusionQueries, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT = nullptr, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color and depth
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color and depth with resolve
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
// Color and depth with resolve and optional sample density
explicit FRHIRenderPassInfo(FRHITexture* ColorRT, ERenderTargetActions ColorAction, FRHITexture* ResolveColorRT,
FRHITexture* DepthRT, EDepthStencilTargetActions DepthActions, FRHITexture* ResolveDepthRT, FRHITexture* InFoveationTexture, FExclusiveDepthStencil InEDS = FExclusiveDepthStencil::DepthWrite_StencilWrite);
enum ENoRenderTargets
{
NoRenderTargets,
};
explicit FRHIRenderPassInfo(ENoRenderTargets Dummy);
explicit FRHIRenderPassInfo();
inline int32 GetNumColorRenderTargets() const;
RHI_API void Validate() const;
RHI_API void ConvertToRenderTargetsInfo(FRHISetRenderTargetsInfo& OutRTInfo) const;
(......)
};
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
class RHI_API FRHICommandList : public FRHIComputeCommandList
{
public:
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
{
if (InInfo.bTooManyUAVs)
{
UE_LOG(LogRHI, Warning, TEXT("RenderPass %s has too many UAVs"));
}
InInfo.Validate();
// 直接调用RHI的接口.
if (Bypass())
{
GetContext().RHIBeginRenderPass(InInfo, Name);
}
// 分配RHI命令.
else
{
TCHAR* NameCopy = AllocString(Name);
ALLOC_COMMAND(FRHICommandBeginRenderPass)(InInfo, NameCopy);
}
// 设置在RenderPass内标记.
Data.bInsideRenderPass = true;
// 缓存活动的RT.
CacheActiveRenderTargets(InInfo);
// 重置子Pass.
ResetSubpass(InInfo.SubpassHint);
Data.bInsideRenderPass = true;
}
void EndRenderPass()
{
// 调用或分配RHI接口.
if (Bypass())
{
GetContext().RHIEndRenderPass();
}
else
{
ALLOC_COMMAND(FRHICommandEndRenderPass)();
}
// 重置在RenderPass内标记.
Data.bInsideRenderPass = false;
// 重置子Pass标记为None.
ResetSubpass(ESubpassHint::None);
}
};
它们的使用案例如下:
void FSceneRenderer::RenderShadowDepthMaps(FRHICommandListImmediate& RHICmdList)
{
(......)
for (int32 AtlasIndex = 0; AtlasIndex < SortedShadowsForShadowDepthPass.TranslucencyShadowMapAtlases.Num(); AtlasIndex++)
{
const FSortedShadowMapAtlas& ShadowMapAtlas = SortedShadowsForShadowDepthPass.TranslucencyShadowMapAtlases[AtlasIndex];
FIntPoint TargetSize = ShadowMapAtlas.RenderTargets.ColorTargets[0]->GetDesc().Extent;
FSceneRenderTargetItem ColorTarget0 = ShadowMapAtlas.RenderTargets.ColorTargets[0]->GetRenderTargetItem();
FSceneRenderTargetItem ColorTarget1 = ShadowMapAtlas.RenderTargets.ColorTargets[1]->GetRenderTargetItem();
FRHITexture* RenderTargetArray[2] =
{
ColorTarget0.TargetableTexture,
ColorTarget1.TargetableTexture
};
// 创建FRHIRenderPassInfo实例.
FRHIRenderPassInfo RPInfo(UE_ARRAY_COUNT(RenderTargetArray), RenderTargetArray, ERenderTargetActions::Load_Store);
TransitionRenderPassTargets(RHICmdList, RPInfo);
// 开始渲染Pass.
RHICmdList.BeginRenderPass(RPInfo, TEXT("RenderTranslucencyDepths"));
{
// 渲染阴影.
for (int32 ShadowIndex = 0; ShadowIndex < ShadowMapAtlas.Shadows.Num(); ShadowIndex++)
{
FProjectedShadowInfo* ProjectedShadowInfo = ShadowMapAtlas.Shadows[ShadowIndex];
ProjectedShadowInfo->SetupShadowUniformBuffers(RHICmdList, Scene);
ProjectedShadowInfo->RenderTranslucencyDepths(RHICmdList, this);
}
}
// 结束渲染Pass.
RHICmdList.EndRenderPass();
RHICmdList.Transition(FRHITransitionInfo(ColorTarget0.TargetableTexture, ERHIAccess::Unknown, ERHIAccess::SRVMask));
RHICmdList.Transition(FRHITransitionInfo(ColorTarget1.TargetableTexture, ERHIAccess::Unknown, ERHIAccess::SRVMask));
}
(......)
}
10.4.4.2 Subpass渲染
先说一下Subpass的由来、作用和特点。
在传统的多Pass渲染中,每个Pass结束时通常会渲染出一组渲染纹理,部分成为着色器参数提供给下一个Pass采样读取。这种纹理采样方式不受任何限制,可以读取任意的领域像素,使用任意的纹理过滤方式。这种方式虽然使用灵活,但在TBR(Tile-Based Renderer)硬件架构的设备中会有较大的消耗:渲染纹理的Pass通常会将渲染结果存储在On-chip的Tile Memory中,待Pass结束后会写回GPU显存(VRAM)中,写回GPU显存是个耗时耗耗电的操作。
传统多Pass之间的内存存取模型,多次发生于On-Chip和全局存储器之间。
如果出现一种特殊的纹理使用情况:上一个Pass渲染处理的纹理,立即被下一个Pass使用,并且下一个Pass只采样像素位置自身的数据,而不需要采样邻域像素的位置。这种情况就符合了Subpass的使用情景。使用Subpass渲染的纹理结果只会存储在Tile Memory中,在Subpass结束后不会写回VRAM,而直接提供Tile Memory的数据给下一个Subpass采样读取。这样就避免了传统Pass结束写回GPU显存以及下一个Pass又从GPU显存读数据的耗时耗电操作,从而提升了性能。
Subpass之间的内存存取模型,都发生在On-Chip内。
UE涉及Subpass的接口和类型如下:
// Engine\Source\Runtime\RHI\Public\RHIResources.h
// 提供给RHI的Subpass标记.
enum class ESubpassHint : uint8
{
None, // 传统渲染(非Subpass)
DepthReadSubpass, // 深度读取Subpass.
DeferredShadingSubpass, // 移动端延迟着色Subpass.
};
// Engine\Source\Runtime\RHI\Public\RHICommandList.h
class RHI_API FRHICommandListBase : public FNoncopyable
{
(......)
protected:
// PSO上下文.
struct FPSOContext
{
uint32 CachedNumSimultanousRenderTargets = 0;
TStaticArray<FRHIRenderTargetView, MaxSimultaneousRenderTargets> CachedRenderTargets;
FRHIDepthRenderTargetView CachedDepthStencilTarget;
// Subpass提示标记.
ESubpassHint SubpassHint = ESubpassHint::None;
uint8 SubpassIndex = 0;
uint8 MultiViewCount = 0;
bool HasFragmentDensityAttachment = false;
} PSOContext;
};
class RHI_API FRHICommandList : public FRHIComputeCommandList
{
public:
void BeginRenderPass(const FRHIRenderPassInfo& InInfo, const TCHAR* Name)
{
(......)
CacheActiveRenderTargets(InInfo);
// 设置Subpass数据.
ResetSubpass(InInfo.SubpassHint);
Data.bInsideRenderPass = true;
}
void EndRenderPass()
{
(......)
// 重置Subpass标记为None.
ResetSubpass(ESubpassHint::None);
}
// 下一个Subpass.
void NextSubpass()
{
// 分配或调用RHI接口.
if (Bypass())
{
GetContext().RHINextSubpass();
}
else
{
ALLOC_COMMAND(FRHICommandNextSubpass)();
}
// 增加Subpass计数.
IncrementSubpass();
}
// 增加subpass计数.
void IncrementSubpass()
{
PSOContext.SubpassIndex++;
}
// 重置Subpass数据.
void ResetSubpass(ESubpassHint SubpassHint)
{
PSOContext.SubpassHint = SubpassHint;
PSOContext.SubpassIndex = 0;
}
};
UE的Subpass主要集中在移动端渲染器:
原因是移动端TBR架构的硬件设备越来越多,占比愈来愈大,Subpass成为移动端主渲染器的首选是必然且合理的。
在Subpass渲染中,还是涉及到了Pass的Overlap问题,采用Overlap可以提升GPU的使用率,提升渲染性能(下图)。
上:未采用Overlap技术的Subpass管线;下:采用了Overlap技术的Subpass管线。
RHI有关Overlap的指令主要是UAV:
class RHI_API FRHIComputeCommandList : public FRHICommandListBase
{
(......)
void BeginUAVOverlap()
{
if (Bypass())
{
GetContext().RHIBeginUAVOverlap();
return;
}
ALLOC_COMMAND(FRHICommandBeginUAVOverlap)();
}
void EndUAVOverlap()
{
if (Bypass())
{
GetContext().RHIEndUAVOverlap();
return;
}
ALLOC_COMMAND(FRHICommandEndUAVOverlap)();
}
void BeginUAVOverlap(FRHIUnorderedAccessView* UAV)
{
FRHIUnorderedAccessView* UAVs[1] = { UAV };
BeginUAVOverlap(MakeArrayView(UAVs, 1));
}
void EndUAVOverlap(FRHIUnorderedAccessView* UAV)
{
FRHIUnorderedAccessView* UAVs[1] = { UAV };
EndUAVOverlap(MakeArrayView(UAVs, 1));
}
void BeginUAVOverlap(TArrayView<FRHIUnorderedAccessView* const> UAVs)
{
if (Bypass())
{
GetContext().RHIBeginUAVOverlap(UAVs);
return;
}
const uint32 AllocSize = UAVs.Num() * sizeof(FRHIUnorderedAccessView*);
FRHIUnorderedAccessView** InlineUAVs = (FRHIUnorderedAccessView**)Alloc(AllocSize, alignof(FRHIUnorderedAccessView*));
FMemory::Memcpy(InlineUAVs, UAVs.GetData(), AllocSize);
ALLOC_COMMAND(FRHICommandBeginSpecificUAVOverlap)(MakeArrayView(InlineUAVs, UAVs.Num()));
}
void EndUAVOverlap(TArrayView<FRHIUnorderedAccessView* const> UAVs)
{
if (Bypass())
{
GetContext().RHIEndUAVOverlap(UAVs);
return;
}
const uint32 AllocSize = UAVs.Num() * sizeof(FRHIUnorderedAccessView*);
FRHIUnorderedAccessView** InlineUAVs = (FRHIUnorderedAccessView**)Alloc(AllocSize, alignof(FRHIUnorderedAccessView*));
FMemory::Memcpy(InlineUAVs, UAVs.GetData(), AllocSize);
ALLOC_COMMAND(FRHICommandEndSpecificUAVOverlap)(MakeArrayView(InlineUAVs, UAVs.Num()));
}
}
10.4.5 RHI资源管理
10.2.2 FRHIResource章节已经阐述过RHI资源的基本接口,FRHIResource自身拥有引用计数和引用计数增加、减少的接口:
class RHI_API FRHIResource
{
public:
// 增加引用计数.
uint32 AddRef() const;
// 减少引用计数.
uint32 Release() const;
// 获取引用计数.
uint32 GetRefCount() const;
};
当然,我们不需要直接引用和管理FRHIResource的实例和计数,而是结合TRefCountPtr的模板类实现自动化管理RHI资源:
// 各种RHI资源引用类型定义.
typedef TRefCountPtr<FRHISamplerState> FSamplerStateRHIRef;
typedef TRefCountPtr<FRHIRasterizerState> FRasterizerStateRHIRef;
typedef TRefCountPtr<FRHIDepthStencilState> FDepthStencilStateRHIRef;
typedef TRefCountPtr<FRHIBlendState> FBlendStateRHIRef;
typedef TRefCountPtr<FRHIVertexDeclaration> FVertexDeclarationRHIRef;
typedef TRefCountPtr<FRHIVertexShader> FVertexShaderRHIRef;
typedef TRefCountPtr<FRHIHullShader> FHullShaderRHIRef;
typedef TRefCountPtr<FRHIDomainShader> FDomainShaderRHIRef;
typedef TRefCountPtr<FRHIPixelShader> FPixelShaderRHIRef;
typedef TRefCountPtr<FRHIGeometryShader> FGeometryShaderRHIRef;
typedef TRefCountPtr<FRHIComputeShader> FComputeShaderRHIRef;
typedef TRefCountPtr<FRHIRayTracingShader> FRayTracingShaderRHIRef;
typedef TRefCountPtr<FRHIComputeFence> FComputeFenceRHIRef;
typedef TRefCountPtr<FRHIBoundShaderState> FBoundShaderStateRHIRef;
typedef TRefCountPtr<FRHIUniformBuffer> FUniformBufferRHIRef;
typedef TRefCountPtr<FRHIIndexBuffer> FIndexBufferRHIRef;
typedef TRefCountPtr<FRHIVertexBuffer> FVertexBufferRHIRef;
typedef TRefCountPtr<FRHIStructuredBuffer> FStructuredBufferRHIRef;
typedef TRefCountPtr<FRHITexture> FTextureRHIRef;
typedef TRefCountPtr<FRHITexture2D> FTexture2DRHIRef;
typedef TRefCountPtr<FRHITexture2DArray> FTexture2DArrayRHIRef;
typedef TRefCountPtr<FRHITexture3D> FTexture3DRHIRef;
typedef TRefCountPtr<FRHITextureCube> FTextureCubeRHIRef;
typedef TRefCountPtr<FRHITextureReference> FTextureReferenceRHIRef;
typedef TRefCountPtr<FRHIRenderQuery> FRenderQueryRHIRef;
typedef TRefCountPtr<FRHIRenderQueryPool> FRenderQueryPoolRHIRef;
typedef TRefCountPtr<FRHITimestampCalibrationQuery> FTimestampCalibrationQueryRHIRef;
typedef TRefCountPtr<FRHIGPUFence> FGPUFenceRHIRef;
typedef TRefCountPtr<FRHIViewport> FViewportRHIRef;
typedef TRefCountPtr<FRHIUnorderedAccessView> FUnorderedAccessViewRHIRef;
typedef TRefCountPtr<FRHIShaderResourceView> FShaderResourceViewRHIRef;
typedef TRefCountPtr<FRHIGraphicsPipelineState> FGraphicsPipelineStateRHIRef;
typedef TRefCountPtr<FRHIRayTracingPipelineState> FRayTracingPipelineStateRHIRef;
使用以上类型之后,RHI资源由TRefCountPtr自动管理引用计数,其中资源的释放是在FRHIResource::Release中:
class RHI_API FRHIResource
{
uint32 Release() const
{
// 计数-1.
int32 NewValue = NumRefs.Decrement();
// 如果计数为0, 处理资源删除.
if (NewValue == 0)
{
// 非延迟删除, 直接delete.
if (!DeferDelete())
{
delete this;
}
// 延迟删除模式.
else
{
// 使用平台相关的原子对比, 为0则加入待删除列表.
if (FPlatformAtomics::InterlockedCompareExchange(&MarkedForDelete, 1, 0) == 0)
{
PendingDeletes.Push(const_cast<FRHIResource*>(this));
}
}
}
// 返回新的值.
return uint32(NewValue);
}
bool DeferDelete() const
{
// 启用了多线程渲染且GRHINeedsExtraDeletionLatency为true, 且资源没有不延迟删除的标记.
return !bDoNotDeferDelete && (GRHINeedsExtraDeletionLatency || !Bypass());
}
};
PendingDeletes
是FRHIResource的静态变量,与它相关的数据和接口有:
class RHI_API FRHIResource
{
public:
FRHIResource(bool InbDoNotDeferDelete = false)
: MarkedForDelete(0)
, bDoNotDeferDelete(InbDoNotDeferDelete)
, bCommitted(true)
{
}
virtual ~FRHIResource()
{
check(PlatformNeedsExtraDeletionLatency() || (NumRefs.GetValue() == 0 && (CurrentlyDeleting == this || bDoNotDeferDelete || Bypass()))); // this should not have any outstanding refs
}
// 待删除资源列表, 注意是无锁无序的指针列表.
static TLockFreePointerListUnordered<FRHIResource, PLATFORM_CACHE_LINE_SIZE> PendingDeletes;
// 当前正在删除的资源.
static FRHIResource* CurrentlyDeleting;
// 平台需要额外的删除延迟.
static bool PlatformNeedsExtraDeletionLatency()
{
return GRHINeedsExtraDeletionLatency && GIsRHIInitialized;
}
// 待删除资源列表.
struct ResourcesToDelete
{
TArray<FRHIResource*> Resources;
uint32 FrameDeleted;
};
// 延迟删除队列.
static TArray<ResourcesToDelete> DeferredDeletionQueue;
static uint32 CurrentFrame;
};
void FRHIResource::FlushPendingDeletes(bool bFlushDeferredDeletes)
{
FRHICommandListImmediate& RHICmdList = FRHICommandListExecutor::GetImmediateCommandList();
// 在删除RHI资源之前, 先确保命令列表已被刷新到GPU.
RHICmdList.ImmediateFlush(EImmediateFlushType::FlushRHIThread);
// 确保没有等待的任务.
FRHICommandListExecutor::CheckNoOutstandingCmdLists();
// 通知RHI刷新完成.
if (GDynamicRHI)
{
GDynamicRHI->RHIPerFrameRHIFlushComplete();
}
// 删除匿名函数.
auto Delete = [](TArray<FRHIResource*>& ToDelete)
{
for (int32 Index = 0; Index < ToDelete.Num(); Index++)
{
FRHIResource* Ref = ToDelete[Index];
check(Ref->MarkedForDelete == 1);
if (Ref->GetRefCount() == 0) // caches can bring dead objects back to life
{
CurrentlyDeleting = Ref;
delete Ref;
CurrentlyDeleting = nullptr;
}
else
{
Ref->MarkedForDelete = 0;
FPlatformMisc::MemoryBarrier();
}
}
};
while (1)
{
if (PendingDeletes.IsEmpty())
{
break;
}
// 平台需要额外的删除延迟.
if (PlatformNeedsExtraDeletionLatency())
{
const int32 Index = DeferredDeletionQueue.AddDefaulted();
// 加入延迟删除队列DeferredDeletionQueue.
ResourcesToDelete& ResourceBatch = DeferredDeletionQueue[Index];
ResourceBatch.FrameDeleted = CurrentFrame;
PendingDeletes.PopAll(ResourceBatch.Resources);
}
// 不需要额外的延迟, 删除整个列表.
else
{
TArray<FRHIResource*> ToDelete;
PendingDeletes.PopAll(ToDelete);
Delete(ToDelete);
}
}
const uint32 NumFramesToExpire = RHIRESOURCE_NUM_FRAMES_TO_EXPIRE;
// 删除DeferredDeletionQueue.
if (DeferredDeletionQueue.Num())
{
// 清空整个DeferredDeletionQueue队列.
if (bFlushDeferredDeletes)
{
FRHICommandListExecutor::GetImmediateCommandList().BlockUntilGPUIdle();
for (int32 Idx = 0; Idx < DeferredDeletionQueue.Num(); ++Idx)
{
ResourcesToDelete& ResourceBatch = DeferredDeletionQueue[Idx];
Delete(ResourceBatch.Resources);
}
DeferredDeletionQueue.Empty();
}
// 删除过期的资源列表.
else
{
int32 DeletedBatchCount = 0;
while (DeletedBatchCount < DeferredDeletionQueue.Num())
{
ResourcesToDelete& ResourceBatch = DeferredDeletionQueue[DeletedBatchCount];
if (((ResourceBatch.FrameDeleted + NumFramesToExpire) < CurrentFrame) || !GIsRHIInitialized)
{
Delete(ResourceBatch.Resources);
++DeletedBatchCount;
}
else
{
break;
}
}
if (DeletedBatchCount)
{
DeferredDeletionQueue.RemoveAt(0, DeletedBatchCount);
}
}
++CurrentFrame;
}
}
不过,需要特意指出,FRHIResource的析构函数并没有释放任何RHI资源,通常需要在FRHIResource的图形平台相关的子类析构函数中执行,以FD3D11UniformBuffer:
// Engine\Source\Runtime\Windows\D3D11RHI\Public\D3D11Resources.h
class FD3D11UniformBuffer : public FRHIUniformBuffer
{
public:
// D3D11固定缓冲资源.
TRefCountPtr<ID3D11Buffer> Resource;
// 包含了RHI引用的资源表.
TArray<TRefCountPtr<FRHIResource> > ResourceTable;
FD3D11UniformBuffer(class FD3D11DynamicRHI* InD3D11RHI, const FRHIUniformBufferLayout& InLayout, ID3D11Buffer* InResource,const FRingAllocation& InRingAllocation);
virtual ~FD3D11UniformBuffer();
(......)
};
// Engine\Source\Runtime\Windows\D3D11RHI\Private\D3D11UniformBuffer.cpp
FD3D11UniformBuffer::~FD3D11UniformBuffer()
{
if (!RingAllocation.IsValid() && Resource != nullptr)
{
D3D11_BUFFER_DESC Desc;
Resource->GetDesc(&Desc);
// 将此统一缓冲区返回给空闲池.
if (Desc.CPUAccessFlags == D3D11_CPU_ACCESS_WRITE && Desc.Usage == D3D11_USAGE_DYNAMIC)
{
FPooledUniformBuffer NewEntry;
NewEntry.Buffer = Resource;
NewEntry.FrameFreed = GFrameNumberRenderThread;
NewEntry.CreatedSize = Desc.ByteWidth;
// Add to this frame's array of free uniform buffers
const int32 SafeFrameIndex = (GFrameNumberRenderThread - 1) % NumSafeFrames;
const uint32 BucketIndex = GetPoolBucketIndex(Desc.ByteWidth);
int32 LastNum = SafeUniformBufferPools[SafeFrameIndex][BucketIndex].Num();
SafeUniformBufferPools[SafeFrameIndex][BucketIndex].Add(NewEntry);
FPlatformMisc::MemoryBarrier(); // check for unwanted concurrency
}
}
}
上面的分析显示,RHI资源的释放主要在FlushPendingDeletes接口中,涉及它的调用有:
// Engine\Source\Runtime\RenderCore\Private\RenderingThread.cpp
void FlushPendingDeleteRHIResources_RenderThread()
{
if (!IsRunningRHIInSeparateThread())
{
FRHIResource::FlushPendingDeletes();
}
}
// Engine\Source\Runtime\RHI\Private\RHICommandList.cpp
void FRHICommandListExecutor::LatchBypass()
{
#if CAN_TOGGLE_COMMAND_LIST_BYPASS
if (IsRunningRHIInSeparateThread())
{
(......)
}
else
{
(......)
if (NewBypass && !bLatchedBypass)
{
FRHIResource::FlushPendingDeletes();
}
}
#endif
(......)
}
// Engine\Source\Runtime\RHI\Public\RHICommandList.inl
void FRHICommandListImmediate::ImmediateFlush(EImmediateFlushType::Type FlushType)
{
switch (FlushType)
{
(......)
case EImmediateFlushType::FlushRHIThreadFlushResources:
case EImmediateFlushType::FlushRHIThreadFlushResourcesFlushDeferredDeletes:
{
(......)
PipelineStateCache::FlushResources();
FRHIResource::FlushPendingDeletes(FlushType == EImmediateFlushType::FlushRHIThreadFlushResourcesFlushDeferredDeletes);
}
break;
(......)
}
}
RHI抽象层主要是以上几处调用FlushPendingDeletes,但以下的图形平台相关的接口也会调用:
- FD3D12Adapter::Cleanup()
- FD3D12Device::Cleanup()
- FVulkanDevice::Destroy()
- FVulkanDynamicRHI::Shutdown()
- FD3D11DynamicRHI::CleanupD3DDevice()
10.4.6 再论多线程渲染
剖析虚幻渲染体系(02)- 多线程渲染篇章中已经详尽地阐述了UE多线程的体系和渲染机制,本节结合下图补充一些说明。
UE的渲染流程中,最多存在4种工作线程:游戏线程(Game Thread)、渲染线程(Render Thread)、RHI线程和GPU(含驱动)。
游戏线程是整个引擎的驱动者,提供所有的源数据和事件,以驱动渲染线程和RHI线程。游戏线程领先渲染线程不超过1帧,更具体地说如果第N帧的渲染线程在第N+1帧的游戏线程的Tick结束时还没有完成,那么游戏线程会被渲染线程卡住。反之,如果游戏线程负载过重,没能及时发送事件和数据给渲染线程,也会导致渲染线程卡住。
渲染线程负责产生RHI的中间命令,在适当的时机派发、刷新指令到RHI线程。因此,渲染线程的卡顿也可能导致RHI的卡顿。
RHI线程负责派发(可选)、转译、提交指令,且渲染的最后一步需要SwapBuffer,这一步需要等待GPU完成渲染工作。因此,渲染GPU的繁忙也会导致RHI线程的卡顿。
除了游戏线程,渲染线程、RHI线程和GPU的工作都是存在间隙的,即游戏线程提供给渲染任务的时机会影响渲染工作的密度,也会影响到渲染的时间,小量多次会浪费渲染效率。
10.4.7 RHI控制台变量
前面章节的代码也显示RHI体系涉及的控制台变量非常多,下面列出部分控制台变量,以便调试、优化RHI渲染效果或效率:
名称 | 描述 |
---|---|
r.RHI.Name | 显示当前RHI的名字,如D3D11。 |
r.RHICmdAsyncRHIThreadDispatch | 实验选项,是否执行RHI调度异步。可使数据更快地刷新到RHI线程,避免帧末尾出现卡顿。 |
r.RHICmdBalanceParallelLists | 允许启用DrawList的预处理,以尝试在命令列表之间均衡负载。0:关闭,1:开启,2:实验选项,使用上一帧的结果(在分屏等不做任何事情)。 |
r.RHICmdBalanceTranslatesAfterTasks | 实验选项,平衡并行翻译后的渲染任务完成。可最小化延迟上下文的数量,但会增加启动转译的延迟。 |
r.RHICmdBufferWriteLocks | 仅与RHI线程相关。用于诊断缓冲锁问题的调试选项。 |
r.RHICmdBypass | 是否绕过RHI命令列表,立即发送RHI命令。0:禁用(需开启多线程渲染),1:开启。 |
r.RHICmdCollectRHIThreadStatsFromHighLevel | 这将在执行的RHI线程上推送统计信息,这样就可以确定它们来自哪个高层级的Pass。对帧速率有不利影响。默认开启。 |
r.RHICmdFlushOnQueueParallelSubmit | 在提交后立即等待并行命令列表的完成。问题诊断。只适用于部分RHI。 |
r.RHICmdFlushRenderThreadTasks | 如果为真,则每次调用时都刷新渲染线程任务。问题诊断。这是一个更细粒度cvars的主开关。 |
r.RHICmdForceRHIFlush | 对每个任务强制刷新发送给RHI线程。问题诊断。 |
r.RHICmdMergeSmallDeferredContexts | 合并小的并行转译任务,基于r.RHICmdMinDrawsPerParallelCmdList。 |
r.RHICmdUseDeferredContexts | 使用延迟上下文并行执行命令列表。只适用于部分RHI。 |
r.RHICmdUseParallelAlgorithms | True使用并行算法。如果r.RHICmdBypass为1则忽略。 |
r.RHICmdUseThread | 使用RHI线程。问题诊断。 |
r.RHICmdWidth | 控制并行渲染器中大量事物的任务粒度。 |
r.RHIThread.Enable | 启用/禁用RHI线程,并确定RHI工作是否在专用线程上运行。 |
RHI.GPUHitchThreshold | GPU上检测卡顿的阈值(毫秒)。 |
RHI.MaximumFrameLatency | 可以排队进行渲染的帧数。 |
RHI.SyncThreshold | 在垂直同步功能启用前的连续“快速”帧数。 |
RHI.TargetRefreshRate | 如果非零,则显示的更新频率永远不会超过目标刷新率(以Hz为单位)。 |
需要注意的是,以上只列出部分RHI相关的变量,还有很多未列出,具体可以在下列菜单中查看全面命令:
10.5 本篇总结
本篇主要阐述了UE的RHI体系的基础概念、类型、机制,希望童鞋们学习完本篇之后,对UE的RHI不再陌生,能够轻松自如地掌握、应用、扩展它。
10.5.1 本篇思考
按惯例,本篇也布置一些小思考,以助理解和加深UE RHI体系的掌握和理解:
-
RHI资源有哪些类型?和渲染层的资源有什么关系和区别?渲染系统如何删除RHI资源?
-
RHI的命令有哪些主要类型?命令列表的执行机制和流程是怎样的?
-
简述RHI的上下文和DynamicRHI之间的关联。简述D3D11的实现架构。
-
UE的多线程之间的关联如何?什么因素会导致它们的卡顿?
特别说明
- 感谢所有参考文献的作者,部分图片来自参考文献和网络,侵删。
- 本系列文章为笔者原创,只发表在博客园上,欢迎分享本文链接,但未经同意,不允许转载!
- 系列文章,未完待续,完整目录请戳内容纲目。
- 系列文章,未完待续,完整目录请戳内容纲目。
- 系列文章,未完待续,完整目录请戳内容纲目。
参考文献
- Unreal Engine Source
- Rendering and Graphics
- Materials
- Graphics Programming
- Graphics Programming Overview
- UE4渲染模块分析
- UE4 Render System Sheet
- 【UE4 Renderer】<03> PipelineBase
- Scalability for All: Unreal Engine 4 with Intel
- 自下而上反思Shader的执行机制(兼Vulkan学习总结)
- Learning DirectX 12 – Lesson 1 – Initialize DirectX 12
- Learning DirectX 12 – Lesson 2 – Rendering
- Learning DirectX 12 – Lesson 3 – Framework
- Learning DirectX 12 – Lesson 4 – Textures
- UE高级性能剖析技术之RHI
- 进击的 Vulkan 移动开发之 Command Buffer
- BRINGING UNREAL ENGINE 4 TO OPENGL Nick Penwarden Epic Games
- Subpass 初步
- Best Practice for Mobile