上世纪的地形渲染方式的实现

众所周知,上世纪的计算机在性能上都没法跟现在的计算机比,可那时的CPU极慢,浮点性能极低,那时候的程序员一谈到除法就眉头紧皱(因为那会CPU算除法的开销很大),可人们却又想玩游戏,怎么办?

于是那时的程序员们想到了各种聪明的方法去实现各种图形学算法,这些算法的特点在于:很符合那时的计算机硬件特点(内存小,主频低,IO慢)。我前几个月无意在github上发现了一个渲染地形的算法,原文链接https://github.com/s-macke/VoxelSpace,觉得挺巧妙的,所以就实现了一下。原作者使用python实现的,20行代码,我觉得执行速度慢,用的C++,上百行(......)

这个算法的原理可以用如下这个动图描述,一个colormap,RGB,用于表示每个地形位置的颜色,一个heightmap,Grayscale,用于表示高度信息。感兴趣的人看明白主要思想后,也可以直接实现一个,所以这里直接贴代码好像没有意义:

 

 

我用的是SDL图形库(这个库入门很简单,最初都是国外人用,但最近越来越多的国内人也在用,负责处理在屏幕上绘制像素点级的操作)

贴整个程序意义不大,在这里就只贴上最主要的部分:

采样结构对象定义,每次对colormap和heightmap采样后返回一个这样的结构对象:

1 struct TerrainSample
2 {
3     double h;           // height
4     uint8_t r, g, b, a; // color
5 };

然后是用于插值的lerp函数系列:

 1 inline double lerp(double xmin, double xmax, double weight)
 2 {
 3     return xmin * (1 - weight) + xmax * weight;
 4 }
 5 
 6 // uint8_t 2d lerp
 7 template <typename Ty>
 8 inline Ty lerp2d_scalar(Ty a0, Ty a1, Ty a2, Ty a3, double xw, double yw)
 9 {
10     double t1 = lerp(double(a0), double(a1), xw);
11     double t2 = lerp(double(a2), double(a3), xw);
12     double t3 = lerp(t1, t2, yw);
13     return (Ty)t3;
14 }

执行采样的时候,由一个类实例对纹理采样,返回一个TerrainSample结构,以下是实现该功能的一个成员函数:

 1 TerrainSample sample(double x, double y)
 2 {
 3     TerrainSample ts;
 4     x = x - floor(x);
 5     y = y - floor(y);
 6     if (tsq == Point)
 7     {
 8         int px = int(x * colormap_w);
 9         int py = int(y * colormap_h);
10         ts.r = colormap[4 * (py * colormap_w + px)];
11         ts.g = colormap[4 * (py * colormap_w + px) + 1];
12         ts.b = colormap[4 * (py * colormap_w + px) + 2];
13         ts.a = colormap[4 * (py * colormap_w + px) + 3];
14         px = int(x * heightmap_w);
15         py = int(y * heightmap_h);
16         ts.h = heightmap[py * colormap_w + px] / 2048.0;
17     }
18     else if (tsq == Linear)
19     {
20         x *= colormap_w;
21         y *= colormap_h;
22         double xl = x - 0.5;
23         double xr = x + 0.5;
24         double yu = y - 0.5;
25         double yd = y + 0.5;
26         double xw, yw;
27         xw = (x - floor(xl)) - 0.5;
28         yw = (y - floor(yu)) - 0.5;
29         xl = xl - floor(xl);
30         xr = xr - floor(xr);
31         yu = yu - floor(yu);
32         yd = yd - floor(yd);
33         uint8_t p0[4], p1[4], p2[4], p3[4];
34         double h[4];
35         uint32_t *pixel = (uint32_t *)colormap;
36         split32(pixel[int(yu) * colormap_w + int(xl)], p0, p0 + 1, p0 + 2, p0 + 3); // xl,yu
37         split32(pixel[int(yu) * colormap_w + int(xr)], p0, p0 + 1, p0 + 2, p0 + 3); // xr,yu
38         split32(pixel[int(yd) * colormap_w + int(xl)], p0, p0 + 1, p0 + 2, p0 + 3); // xl,yd
39         split32(pixel[int(yd) * colormap_w + int(xr)], p0, p0 + 1, p0 + 2, p0 + 3); // xr,yd
40         h[0] = heightmap[int(yu) * heightmap_w + int(xl)];
41         h[1] = heightmap[int(yu) * heightmap_w + int(xr)];
42         h[2] = heightmap[int(yd) * heightmap_w + int(xl)];
43         h[3] = heightmap[int(yd) * heightmap_w + int(xr)];
44         uint8_t color[4];
45         double height;
46         color[0] = lerp2d_scalar(p0[0], p1[0], p2[0], p3[0], xw, yw);
47         color[1] = lerp2d_scalar(p0[1], p1[1], p2[1], p3[1], xw, yw);
48         color[2] = lerp2d_scalar(p0[2], p1[2], p2[2], p3[2], xw, yw);
49         color[3] = lerp2d_scalar(p0[3], p1[3], p2[3], p3[3], xw, yw);
50         height = lerp2d_scalar(h[0], h[1], h[2], h[3], xw, yw);
51         ts.r = color[0];
52         ts.g = color[1];
53         ts.b = color[2];
54         ts.a = color[3];
55         ts.h = height / 2048.0;
56     }
57     return ts;
58 }

程序跑出来的几个结果图如下,渲染结果里可以大致看出山脉的起伏,640x480分辨率。

算法的局限性在于它只能渲染平视地形的情况,虽说可以加入俯仰角,但是本质上是个hack,不能上仰/下俯太多角度,否则会出现视图拉伸,整个图像会有平行四边形的那种切变特点,失真较大,而且对于近距物体的表现不佳,颗粒感较为明显,读者可以把对高度图的nearest filter改为bilinear filter试一下效果,也许会创造出其它的一些有趣效果。但是对于一个上世纪的地形渲染来说,这个小算法背后的想法还是挺cute的。

 

posted on 2018-12-04 16:10  烈日行者  阅读(932)  评论(0编辑  收藏  举报

导航