洛谷 P1080 国王游戏
这是一道贪心题,贪心的策略是将大臣们按左右手金币的乘积升序排列,具体证明过程可以参见洛谷大佬的题解,这里就不再赘述了。
因为本菜鸡之前没有接触过高精度运算,对C++的运算符重载也不太熟练,所以正好借此机会记录一下用到的高精度模版。模版框架参考于:https://blog.csdn.net/Wall_F/article/details/8373395
然而,直接复制该模版会导致TLE,原因在于这道题只需要高精度乘(除)低精度即可,但模版的乘除法运算是支持双高精度的,依赖于高精度的加减法,算法更加复杂,对于这道题来说增加了不必要的时间开销。所以我们需要把乘除法修改一下,删除高精度加减法的部分,得到如下简化版的代码,并顺利AC。
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 10010;
struct bign
{
int len, s[MAXN];
bign ()
{
memset(s, 0, sizeof(s));
len = 1;
}
bign (int num) { *this = num; }
bign (const char *num) { *this = num; }
bign operator = (const int num)
{
char s[MAXN];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char *num)
{
for(int i = 0; num[i] == '0'; num++);
len = strlen(num);
for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
return *this;
}
void clean()
{
while(len > 1 && !s[len-1]) len--;
}
bign operator * (const int &b)
{
bign c;
c.len = len + 5;
for(int i = 0; i < len; i++)
c.s[i] += s[i] * b;
for(int i = 0; i < c.len; i++)
{
c.s[i+1] += c.s[i]/10;
c.s[i] %= 10;
}
c.clean();
return c;
}
bign operator *= (const int &b)
{
*this = *this * b;
return *this;
}
bign operator / (const int &b)
{
bign c;
int f = 0;
for(int i = len-1; i >= 0; i--)
{
f = f*10 + s[i];
while(f >= b)
{
f -= b;
c.s[i]++;
}
}
c.len = len;
c.clean();
return c;
}
bign operator /= (const int &b)
{
*this = *this / b;
return *this;
}
bool operator < (const bign &b)
{
if(len != b.len) return len < b.len;
for(int i = len-1; i != -1; i--)
{
if(s[i] != b.s[i]) return s[i] < b.s[i];
}
return false;
}
bool operator > (const bign &b)
{
if(len != b.len) return len > b.len;
for(int i = len-1; i != -1; i--)
{
if(s[i] != b.s[i]) return s[i] > b.s[i];
}
return false;
}
bool operator == (const bign &b)
{
return !(*this > b) && !(*this < b);
}
bool operator >= (const bign &b)
{
return *this > b || *this == b;
}
string str() const
{
string res = "";
for(int i = 0; i < len; i++) res = char(s[i]+'0')+res;
return res;
}
};
istream& operator >> (istream &in, bign &x)
{
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream &out, const bign &x)
{
out << x.str();
return out;
}
struct Minister
{
int left, right;
};
bool cmp(Minister a, Minister b)
{
return a.left * a.right < b.left * b.right;
}
int main()
{
int n;
int kingLeft, kingRight;
cin >> n;
cin >> kingLeft >> kingRight;
vector<Minister> queue;
for (int i = 0; i < n; i++)
{
Minister m;
cin >> m.left >> m.right;
queue.push_back(m);
}
sort(queue.begin(), queue.end(), cmp);
bign reward, maxReward = 0;
bign product = kingLeft;
for (int i = 0; i < n; i++)
{
reward = product / queue[i].right;
if (reward >= maxReward)
maxReward = reward;
product *= queue[i].left;
}
cout << maxReward << endl;
return 0;
}