八皇后(N皇后)问题算法程序(回溯法)

这是一个经典问题,经常出现于各种有关程序与算法的教科书中。

本问题是求所有可行解,所以要用穷尽搜索,回溯法适合于穷尽搜索。

本程序使用递归调用的回溯法来解决问题。

递归的关键是递归调用和结束条件。

比起非递归的回溯法来,本程序逻辑相对比较简洁,但是时间上会略微慢一些。

/*
 *
 * 【问题描述】在一个8×8的国际象棋棋盘上放置8个皇后,
 * 要求每个皇后两两之间不“冲突”,即没有一个皇后能“吃
 * 掉”任何其他一个皇后,简单的说就是没有任何两个皇后
 * 占据棋盘上的同一行或同一列或同一对角线,即在每一横
 * 列、竖列、斜列都只有一个皇后。
 *
 * 递归法求出8个皇后问题的解
 * 本程序使用一维数组表示皇后的位置,queen[i]的值表示第i行皇后所在的列
 *
 * 本程序通过修改宏定义MAXQUEEN的值,可以解决N皇后问题。
 *
 */

#include <stdio.h>
#include <conio.h>

#define TRUE 1
#define FALSE 0
#define MAXQUEEN 8
#define ABS(x) ((x>0)?(x):-(x))  /*求x的绝对值*/

/*存放8个皇后的列位置,数组下标为皇后的列位置*/
int queen[MAXQUEEN];
int total_solution = 0;  /*计算共有几组解*/

/*函数原型声明*/
void place(int);
int attack(int,int);
void output_solution();

int main(void)
{
    place(0); /*从第0个皇后开始摆放至棋盘*/

    return 0;
}

/* 递归放置皇后子程序 */
void place(int q)
{
    int i=0;
    while(i<MAXQUEEN)
    {
        if(!attack(q, i)) /* 皇后未受攻击 */
        {
            queen[q]=i; /* 储存皇后所在的列位置 */
            /* 判断是否找到一组解 */
            if(q==MAXQUEEN-1)
                output_solution(); /* 输出此组解 */
            else
                place(q+1); /* 否则继续摆下一个皇后 */
        }
        i++;
    }
}

/* 测试在(row,col)上的皇后是否遭受攻击若遭受攻击则返回值为1,否则返回0 */
int attack(int row, int col)
{
    int i, atk=FALSE;
    int offset_row, offset_col;
    i=0;
    while(!atk && i<row)
    {
        offset_row=ABS(i-row);
        offset_col=ABS(queen[i]-col);
        /* 判断两皇后是否在同一列,是否在同一对角线 */
        /* 若两皇后在同列或同对角线,则产生攻击,atk==TRUE */
        atk = (queen[i] == col) || (offset_row == offset_col);
        i++;
    }
    return atk;
}

/* 输出8个皇后的解 */
void output_solution()
{
    int x,y;
    total_solution += 1;
    printf("Solution#%3d\n\t",total_solution);
    for(x=0;x<MAXQUEEN;x++)
    {
        for(y=0;y<MAXQUEEN;y++)
        if(y==queen[x])
            printf("Q"); /* 用字母Q表示皇后 */
        else
            printf("-"); /* 用-表示空白 */
        printf("\n\t");
    }
    printf("\n");

    getchar();
}

posted on 2016-04-18 23:12  海岛Blog  阅读(255)  评论(0编辑  收藏  举报

导航