CCF201509-4 高速公路(100分)
试题编号: | 201509-4 |
试题名称: | 高速公路 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: |
问题描述
某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路。
现在,大臣们帮国王拟了一个修高速公路的计划。看了计划后,国王发现,有些城市之间可以通过高速公路直接(不经过其他城市)或间接(经过一个或多个其他城市)到达,而有的却不能。如果城市A可以通过高速公路到达城市B,而且城市B也可以通过高速公路到达城市A,则这两个城市被称为便利城市对。 国王想知道,在大臣们给他的计划中,有多少个便利城市对。 输入格式
输入的第一行包含两个整数n, m,分别表示城市和单向高速公路的数量。
接下来m行,每行两个整数a, b,表示城市a有一条单向的高速公路连向城市b。 输出格式
输出一行,包含一个整数,表示便利城市对的数量。
样例输入
5 5
1 2 2 3 3 4 4 2 3 5 样例输出
3
样例说明
城市间的连接如图所示。有3个便利城市对,它们分别是(2, 3), (2, 4), (3, 4),请注意(2, 3)和(3, 2)看成同一个便利城市对。 评测用例规模与约定
前30%的评测用例满足1 ≤ n ≤ 100, 1 ≤ m ≤ 1000;
前60%的评测用例满足1 ≤ n ≤ 1000, 1 ≤ m ≤ 10000; 所有评测用例满足1 ≤ n ≤ 10000, 1 ≤ m ≤ 100000。 |
问题链接:CCF201509试题。
问题描述:(参见上文)。
问题分析:这是一个强联通图的问题,用Tarjan算法来解决。另外一个算法是kosaraju算法,也用于解决强联通图问题。
程序说明:本程序采用Tarjan算法。主函数main()中,创建图对象是参数本应该用n,但是提交后出现了运行错误,所有改成n+1。程序通过使用Tarjan算法类(参见以下链接)来实现,做了简单修改,使用变量ans来存储结果,其中增加了中间变量count。
求得强联通子图后,对于每一个强联通子图如果有k个结点,若k>1则强联通对结点的数量为k*(k-1)/2,若k=1则为0。
相关链接:Tarjan算法查找强联通组件。
提交后得100分的C++语言程序如下:
/* CCF201509-4 高速公路 */ #include <iostream> #include <list> #include <stack> using namespace std; const int NIL = -1; int ans = 0; // A class that represents an directed graph class Graph { int V; // No. of vertices list<int> *adj; // A dynamic array of adjacency lists // A Recursive DFS based function used by SCC() void SCCUtil(int u, int disc[], int low[], stack<int> *st, bool stackMember[]); public: Graph(int V); // Constructor void addEdge(int v, int w); // function to add an edge to graph void SCC(); // prints strongly connected components }; Graph::Graph(int V) { this->V = V; adj = new list<int>[V]; } void Graph::addEdge(int v, int w) { adj[v].push_back(w); } // A recursive function that finds and prints strongly connected // components using DFS traversal // u --> The vertex to be visited next // disc[] --> Stores discovery times of visited vertices // low[] -- >> earliest visited vertex (the vertex with minimum // discovery time) that can be reached from subtree // rooted with current vertex // *st -- >> To store all the connected ancestors (could be part // of SCC) // stackMember[] --> bit/index array for faster check whether // a node is in stack void Graph::SCCUtil(int u, int disc[], int low[], stack<int> *st, bool stackMember[]) { // A static variable is used for simplicity, we can avoid use // of static variable by passing a pointer. static int time = 0; // Initialize discovery time and low value disc[u] = low[u] = ++time; st->push(u); stackMember[u] = true; // Go through all vertices adjacent to this list<int>::iterator i; for (i = adj[u].begin(); i != adj[u].end(); ++i) { int v = *i; // v is current adjacent of 'u' // If v is not visited yet, then recur for it if (disc[v] == -1) { SCCUtil(v, disc, low, st, stackMember); // Check if the subtree rooted with 'v' has a // connection to one of the ancestors of 'u' // Case 1 (per above discussion on Disc and Low value) low[u] = min(low[u], low[v]); } // Update low value of 'u' only of 'v' is still in stack // (i.e. it's a back edge, not cross edge). // Case 2 (per above discussion on Disc and Low value) else if (stackMember[v] == true) low[u] = min(low[u], disc[v]); } // head node found, pop the stack and print an SCC int w = 0; // To store stack extracted vertices int count = 0; if (low[u] == disc[u]) { while (st->top() != u) { w = (int) st->top(); // cout << w << " "; count++; stackMember[w] = false; st->pop(); } w = (int) st->top(); // cout << w << "\n"; count++; stackMember[w] = false; st->pop(); } if(count > 1) ans += count * (count -1) / 2; } // The function to do DFS traversal. It uses SCCUtil() void Graph::SCC() { int *disc = new int[V]; int *low = new int[V]; bool *stackMember = new bool[V]; stack<int> *st = new stack<int>(); // Initialize disc and low, and stackMember arrays for (int i = 0; i < V; i++) { disc[i] = NIL; low[i] = NIL; stackMember[i] = false; } // Call the recursive helper function to find strongly // connected components in DFS tree with vertex 'i' for (int i = 0; i < V; i++) if (disc[i] == NIL) SCCUtil(i, disc, low, st, stackMember); } int main() { int n, m, src, dest; cin >> n >> m; Graph g(n+1); for(int i=1; i<=m; i++) { cin >> src >> dest; g.addEdge(src, dest); } g.SCC(); cout << ans << endl; return 0; }