CCF201503-5 最小花费(30分)


试题编号: 201503-5
试题名称: 最小花费
时间限制: 4.0s
内存限制: 256.0MB
问题描述:
问题描述
  C国共有n个城市。有n-1条双向道路,每条道路连接两个城市,任意两个城市之间能互相到达。小R来到C国旅行,他共规划了m条旅行的路线,第i条旅行路线的起点是si,终点是ti。在旅行过程中,小R每行走一单位长度的路需要吃一单位的食物。C国的食物只能在各个城市中买到,而且不同城市的食物价格可能不同。
  然而,小R不希望在旅行中为了购买较低价的粮食而绕远路,因此他总会选择最近的路走。现在,请你计算小R规划的每条旅行路线的最小花费是多少。
输入格式
  第一行包含2个整数n和m。
  第二行包含n个整数。第i个整数wi表示城市i的食物价格。
  接下来n-1行,每行包括3个整数u, v, e,表示城市u和城市v之间有一条长为e的双向道路。
  接下来m行,每行包含2个整数si和ti,分别表示一条旅行路线的起点和终点。
输出格式
  输出m行,分别代表每一条旅行方案的最小花费。
样例输入
6 4
1 7 3 2 5 6
1 2 4
1 3 5
2 4 1
3 5 2
3 6 1
2 5
4 6
6 4
5 6
样例输出
35
16
26
13
样例说明
  对于第一条路线,小R会经过2->1->3->5。其中在城市2处以7的价格购买4单位粮食,到城市1时全部吃完,并用1的价格购买7单位粮食,然后到达终点。
评测用例规模与约定
  前10%的评测用例满足:n, m ≤ 20, wi ≤ 20;
  前30%的评测用例满足:n, m ≤ 200;
  另有40%的评测用例满足:一个城市至多与其它两个城市相连。
  所有评测用例都满足:1 ≤ n, m ≤ 105,1 ≤ wi ≤ 106,1 ≤ e ≤ 10000。

问题链接:CCF201503试题

原题链接最小花费

问题描述参见上文。

问题分析:这是一个图的算法问题。n个结点n-1条边,任意两个结点都相互联通,说明是一个树,即任意两点之间只有一条唯一的通路。可以用DFS来寻找一个从起点到终点的通路,算出最小花费,但是过于费时间,只得了30分这个需要从算法上进行彻底的改进!这个解法的问题在于需要求得起点到终点得对<src,dest>多的时候,需要每次都做一次DFS,总体上时间复杂度过高。

程序说明:程序中,图用邻接表表示。对于输入的m对起点和终点,分别用DFS寻找它们之间的路径,然后算出最小花费。

提交后得30分的C++语言程序如下:

/* CCF201503-5 最小花费 */

#include <iostream>
#include <cstring>
#include <vector>

using namespace std;

typedef unsigned long long ULL;

const int MAXN = 100000;
ULL price[MAXN+1];
int visited[MAXN+1];

struct adjacency {
    int node, edge;
    adjacency(int n, int e) { node = n; edge = e;}
};
vector<adjacency> g[MAXN+1];

struct node {
    int node, edge;
};

int N, M;
ULL ans;
bool endflag;

void dfs(int node, int end, ULL miniprice)
{
    ULL currprice;
    ULL cost;

    if(node == end) {
        cout << ans << endl;

        endflag = true;

        return;
    } else {
        visited[node] = 1;
        for(int i=0; i<(int)g[node].size() && !endflag; i++) {
            if(!visited[g[node][i].node]) {
                currprice = min(miniprice, price[node]);

                cost = g[node][i].edge * currprice;

                ans += cost;
                dfs(g[node][i].node, end, currprice);
                ans -= cost;
            }
        }
    }
}

int main()
{
    int u, v, e;

    // 输入数据
    cin >> N >> M;
    for(int i=1; i<=N; i++)
        cin >> price[i];
    for(int i=1; i<=N-1; i++) {
        cin >> u >> v >> e;

        g[u].push_back(adjacency(v, e));
        g[v].push_back(adjacency(u, e));
    }

    // 输入起点和终点,用DFS计算最小花费,并且输出结果
    int start, end;
    for(int i=0; i<M; i++) {
        cin >> start >> end;

        memset(visited, 0, sizeof(visited));
        endflag = false;
        ans = 0;
        dfs(start, end, price[start]);
    }

    return 0;
}


参考题解(100分):第四届CCF软件能力认证 第五题(最小花费)题解

参考题解(这个解法似乎更加有效):第四届CCF软件能力认证(CSP2015) 第五题(最小花费)题解

posted on 2017-02-16 17:04  海岛Blog  阅读(186)  评论(0编辑  收藏  举报

导航