Topological Sorting(拓扑排序)

程序来源:Topological Sorting

C++程序如下:

// A C++ program to print topological sorting of a DAG
#include<iostream>
#include <list>
#include <stack>
using namespace std;
 
// Class to represent a graph
class Graph
{
    int V;    // No. of vertices'
 
    // Pointer to an array containing adjacency listsList
    list<int> *adj;
 
    // A function used by topologicalSort
    void topologicalSortUtil(int v, bool visited[], stack<int> &Stack);
public:
    Graph(int V);   // Constructor
 
     // function to add an edge to graph
    void addEdge(int v, int w);
 
    // prints a Topological Sort of the complete graph
    void topologicalSort();
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}
 
// A recursive function used by topologicalSort
void Graph::topologicalSortUtil(int v, bool visited[], 
                                stack<int> &Stack)
{
    // Mark the current node as visited.
    visited[v] = true;
 
    // Recur for all the vertices adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            topologicalSortUtil(*i, visited, Stack);
 
    // Push current vertex to stack which stores result
    Stack.push(v);
}
 
// The function to do Topological Sort. It uses recursive 
// topologicalSortUtil()
void Graph::topologicalSort()
{
    stack<int> Stack;
 
    // Mark all the vertices as not visited
    bool *visited = new bool[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;
 
    // Call the recursive helper function to store Topological
    // Sort starting from all vertices one by one
    for (int i = 0; i < V; i++)
      if (visited[i] == false)
        topologicalSortUtil(i, visited, Stack);
 
    // Print contents of stack
    while (Stack.empty() == false)
    {
        cout << Stack.top() << " ";
        Stack.pop();
    }
}
 
// Driver program to test above functions
int main()
{
    // Create a graph given in the above diagram
    Graph g(6);
    g.addEdge(5, 2);
    g.addEdge(5, 0);
    g.addEdge(4, 0);
    g.addEdge(4, 1);
    g.addEdge(2, 3);
    g.addEdge(3, 1);
 
    cout << "Following is a Topological Sort of the given graph \n";
    g.topologicalSort();
 
    return 0;
}

程序运行结果(下同):
Following is a Topological Sort of the given graph
5 4 2 3 1 0

Java程序如下:
// A Java program to print topological sorting of a DAG
import java.io.*;
import java.util.*;
 
// This class represents a directed graph using adjacency
// list representation
class Graph
{
    private int V;   // No. of vertices
    private LinkedList<Integer> adj[]; // Adjacency List
 
    //Constructor
    Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i=0; i<v; ++i)
            adj[i] = new LinkedList();
    }
 
    // Function to add an edge into the graph
    void addEdge(int v,int w) { adj[v].add(w); }
 
    // A recursive function used by topologicalSort
    void topologicalSortUtil(int v, boolean visited[],
                             Stack stack)
    {
        // Mark the current node as visited.
        visited[v] = true;
        Integer i;
 
        // Recur for all the vertices adjacent to this
        // vertex
        Iterator<Integer> it = adj[v].iterator();
        while (it.hasNext())
        {
            i = it.next();
            if (!visited[i])
                topologicalSortUtil(i, visited, stack);
        }
 
        // Push current vertex to stack which stores result
        stack.push(new Integer(v));
    }
 
    // The function to do Topological Sort. It uses
    // recursive topologicalSortUtil()
    void topologicalSort()
    {
        Stack stack = new Stack();
 
        // Mark all the vertices as not visited
        boolean visited[] = new boolean[V];
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // Call the recursive helper function to store
        // Topological Sort starting from all vertices
        // one by one
        for (int i = 0; i < V; i++)
            if (visited[i] == false)
                topologicalSortUtil(i, visited, stack);
 
        // Print contents of stack
        while (stack.empty()==false)
            System.out.print(stack.pop() + " ");
    }
 
    // Driver method
    public static void main(String args[])
    {
        // Create a graph given in the above diagram
        Graph g = new Graph(6);
        g.addEdge(5, 2);
        g.addEdge(5, 0);
        g.addEdge(4, 0);
        g.addEdge(4, 1);
        g.addEdge(2, 3);
        g.addEdge(3, 1);
 
        System.out.println("Following is a Topological " +
                           "sort of the given graph");
        g.topologicalSort();
    }
}
// This code is contributed by Aakash Hasija


Python程序如下:
#Python program to print topological sorting of a DAG
from collections import defaultdict
 
#Class to represent a graph
class Graph:
    def __init__(self,vertices):
        self.graph = defaultdict(list) #dictionary containing adjacency List
        self.V = vertices #No. of vertices
 
    # function to add an edge to graph
    def addEdge(self,u,v):
        self.graph[u].append(v)
 
    # A recursive function used by topologicalSort
    def topologicalSortUtil(self,v,visited,stack):
 
        # Mark the current node as visited.
        visited[v] = True
 
        # Recur for all the vertices adjacent to this vertex
        for i in self.graph[v]:
            if visited[i] == False:
                self.topologicalSortUtil(i,visited,stack)
 
        # Push current vertex to stack which stores result
        stack.insert(0,v)
 
    # The function to do Topological Sort. It uses recursive 
    # topologicalSortUtil()
    def topologicalSort(self):
        # Mark all the vertices as not visited
        visited = [False]*self.V
        stack =[]
 
        # Call the recursive helper function to store Topological
        # Sort starting from all vertices one by one
        for i in range(self.V):
            if visited[i] == False:
                self.topologicalSortUtil(i,visited,stack)
 
        # Print contents of stack
        print stack
 
g= Graph(6)
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
 
print "Following is a Topological Sort of the given graph"
g.topologicalSort()
#This code is contributed by Neelam Yadav







posted on 2017-02-28 00:32  海岛Blog  阅读(337)  评论(0编辑  收藏  举报

导航