Project Euler Problem 14 Longest Collatz sequence
Problem 14
The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following sequence:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
C++:
#include <iostream> #include <cstring> using namespace std; const int MAXN = 1000000; const int ONE_HUNDRED_MILLION = 100000000; int cs[ONE_HUNDRED_MILLION+1]; // Collatz sequence count int cscount(long long x) { if(x <= ONE_HUNDRED_MILLION && cs[x]) return cs[x]; int count; if(x % 2 == 0) count = 1 + cscount(x / 2); else count = 1 + cscount(x * 3 + 1); if(x <= ONE_HUNDRED_MILLION) cs[x] = count; return count; } int main() { memset(cs, 0, sizeof(cs)); cs[1] = 1; int n, ans; while(cin >> n && n <= MAXN) { ans = 1; for(int i=1; i<=n; i++) { cs[i] = cscount(i); if(cs[i] > cs[ans]) ans = i; } cout << ans << endl; } return 0; }
Input data:
999999
C++(Too slow):
#include <iostream> using namespace std; //#define DEBUG const int MAXN = 1000000; // Collatz sequence count int cscount(int start) { #ifdef DEBUG cout << start << ": "; #endif int count = 0; for(;;) { #ifdef DEBUG cout << start << " "; #endif count++; if(start == 1) break; if(start & 1) start = 3 * start + 1; else start >>= 1; } #ifdef DEBUG cout << endl; #endif return count; } int main() { int n, ans, maxcount=0, temp; while(cin >> n && n <= MAXN) { for(int i=1; i<=n; i++) { temp = cscount(i); if(temp > maxcount) { maxcount = temp; ans = i; } } cout << ans << endl; } return 0; }