Project Euler Problem 38 Pandigital multiples
Problem 38
Take the number 192 and multiply it by each of 1, 2, and 3:
192 × 1 = 192
192 × 2 = 384
192 × 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?
C++:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const long N = 10000; bool ispandigital(int n) { int digits = 0b1111111110; while (n) { digits ^= 1 << (n % 10); n /= 10; } return !digits; } int main() { int val, max=0, j; char s[32], t[32]; for(int i=1; i<=N; i++) { s[0] = '\0'; t[0] = '\0'; j = 1; while(strlen(s) < 9) { sprintf(t, "%d", i * j); strcat(s, t); j++; } if(strlen(s) == 9) { val = atoi(s); if(ispandigital(val)) if(val > max) max = val; } } cout << max << endl; return 0; }