UVALive2678 UVA1121 Subsequence【前缀和+二分搜索+尺取法】
A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, anda positive integer S (S < 100 000 000) are given. Write a program to find the minimal length of thesubsequence of consecutive elements of the sequence, the sum of which is greater than or equal to S.
Input
Many test cases will be given. For each test case the program has to read the numbers N and S,separated by an interval, from the first line. The numbers of the sequence are given in the second lineof the test case, separated by intervals. The input will finish with the end of file.
Output
For each the case the program has to print the result on separate line of the output file.
Sample Input
10 15
5 1 3 5 10 7 4 9 2 8
5 11
1 2 3 4 5
Sample Output
2
3
Regionals 2006 >> Europe - Southeastern
问题链接:UVALive2678 UVA1121 Subsequence。
题意简述:求长度为n的序列的一个子序列的最小长度,满足该子序列和不小于S。
问题分析:
有两个方法可以解决该问题,一是前缀和+二分搜索,二是尺取法。
1.前缀和+二分搜索
计算前缀和是一个关键。有了前缀和,判断前缀和的差值是否大于s,就可以找到满足条件的最小子序列长度。
需要注意的是,计算前缀和时需要有prefixsum[0]=0这个元素。
二分搜索可以使用函数lower_bound()来实现。
2.尺取法
尺取法是先求出最前面的子序列,使之满足子序列和大于s;
重复后面一步,直到n个元素都使用到;
去掉子序列的第1个元素,子序列的后面再加上其他元素,满足子序列大于s的子序列,找出最小的长度。
AC的C++语言程序(前缀和+二分查找)如下:
/* UVALive2678 UVA1121 Subsequence */ #include <iostream> #include <algorithm> using namespace std; const int N = 100000; int prefixsum[N+1]; int main() { int n, s, val, ans; while(cin >> n >> s) { // 输入数据,计算前缀和 prefixsum[0] = 0; for(int i=1; i<=n; i++) { cin >> val; prefixsum[i] = prefixsum[i - 1] + val; } if(prefixsum[n] < s) ans = 0; else { ans = n; for(int i=0; prefixsum[i] + s < prefixsum[n]; i++) { int pos = lower_bound(prefixsum + i, prefixsum + n, prefixsum[i] + s) - prefixsum; ans = min(ans, pos - i); } } cout << ans << endl; } return 0; }
AC的C++语言程序(尺取法)如下:
/* UVALive2678 UVA1121 Subsequence */ #include <iostream> using namespace std; const int N = 100000; int a[N+1]; int solve(int n, int s) { int res = n + 1; int start=0, end=0, sum=0; for(;;) { while(end < n && sum < s) sum += a[end++]; if(sum < s) break; res = min(res, end - start); sum -= a[start++]; } return (res > n) ? 0 : res; } int main() { int n, s; while(cin >> n >> s) { for(int i=0; i<n; i++) cin >> a[i]; cout << solve(n, s) << endl; } return 0; }