NUC1157 To the Max【最大子段和+DP】

To the Max

时间限制: 1000ms 内存限制: 65536KB

通过次数: 1总提交次数: 1

问题描述

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:

 0 -2 -7  0 
 9  2 -6  2 
-4  1 -4  1 
-1  8  0 -2

is in the lower left corner:
 9 2 
-4 1 
-1 8 

and has a sum of 15.
输入描述
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
输出描述
Output the sum of the maximal sub-rectangle.
样例输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2
样例输出
15
来源
Greater New York 2001



问题分析:(略)

这个问题和《UVALive2288 POJ1050 HDU1081 ZOJ1074 To The Max【最大子段和+DP】》是同一个问题,代码直接用就AC了。

程序说明:参见参考链接。

参考链接:UVALive2288 POJ1050 HDU1081 ZOJ1074 To The Max【最大子段和+DP】

题记:程序做多了,不定哪天遇见似曾相识的。

AC的C++程序如下:

/* UVALive2288 POJ1050 HDU1081 ZOJ1074 To The Max */

#include <iostream>
#include <limits.h>
#include <string.h>

using namespace std;

const int N = 100;
int a[N][N], b[N];

int main()
{
    int n, maxval;

    while(cin >> n) {
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                cin >> a[i][j];

        maxval = INT_MIN;
        for(int i=0; i<n; i++) {
            memset(b, 0, sizeof(b));

            for(int j=i; j<n; j++) {
                int sum = 0;
                for(int k=0; k<n; k++) {
                    b[k] += a[j][k];

                    if(sum + b[k] > 0)
                        sum += b[k];
                    else
                        sum = b[k];

                    maxval = max(maxval, sum);
                }
            }
        }

        cout << maxval << endl;
    }

    return 0;
}



posted on 2017-06-26 08:04  海岛Blog  阅读(160)  评论(0编辑  收藏  举报

导航