ScalaPB(5):用akka-stream实现reactive-gRPC
在前面几篇讨论里我们介绍了scala-gRPC的基本功能和使用方法,我们基本确定了选择gRPC作为一种有效的内部系统集成工具,主要因为下面gRPC支持的几种服务模式:
1、Unary-Call:独立的一对client-request/server-response,是我们常用的http交互模式
2、Server-Streaming:client发出一个request后从server端接收一串多个response
3、Client-Streaming:client向server发送一串多个request后从server接收一个response
4、Bidirectional-Streaming:由client首先发送request启动连接,然后在这个连接上两端可以不断交互信息。
很明显,gRPC支持双向的streaming。那么如果能把gRPC中ListenableFuture和StreamObserver这两种类型转成akka-stream的基本类型应该就能够实现所谓的reactive-gRPC了。如果我们能用akka-stream编程方式实现gRPC服务调用的话,可能会遭遇下面的场景:在服务端我们只需要实现一种akka-stream的Flow把进来的request转化成出去的response,如下:
// Unary case
Flow[Request].map(computeResponse)
// Server streaming
Flow[Request].flatMapConcat(computeResponses)
// Client streaming
Flow[Request].fold(defaultResponse)(computeResponse)
// Bidirectional streaming
Flow[Request].flatMapConcat(computeResponses)
当然,这是个akka-stream Flow,我们可以在这个Flow里调用任何akka-stream提供的功能,如:
Flow[Request]
.throttle(1, 10.millis, 1, ThrottleMode.Shaping)
.map(computeResponse)
在客户端我们可以直接经客户端stub调用Flow,如下:
Source
.single(request)
.via(stub.doSomething)
.runForeach(println)
刚好,beyond-the-lines gRPCAkkaStream开源项目提供这么一种gRPC StreamObserver到aka-stream Flow转换桥梁。下面是gRPCAkkaStream的使用示范。先从Unary-Call开始:下面是.proto文件的IDL服务描述:
syntax = "proto3";
package learn.grpc.akka.stream.services;
message NumPair {
int32 num1 = 1;
int32 num2 = 2;
}
message Num {
int32 num = 1;
}
message SumResult {
int32 result = 1;
}
service SumNumbers {
rpc SumPair(NumPair) returns (SumResult) {}
}
我们看看编译后自动产生的SumGrpcAkkaStream.scala文件中一些相关类型和函数:
服务界面描述:
trait SumNumbers extends AbstractService {
override def serviceCompanion = SumNumbers
def sumPair: Flow[learn.grpc.akka.stream.services.sum.NumPair, learn.grpc.akka.stream.services.sum.SumResult, NotUsed]
}
我们看到服务函数sumPair是一个akka-stream Fow[NumPair,SumResult,NotUsed]。下面是具体实现SumNumbers.sumPair代码:
class gRPCAkkaStreamService extends SumGrpcAkkaStream.SumNumbers {
val logger: Logger = Logger.getLogger(classOf[gRPCAkkaStreamService].getName)
override def sumPair: Flow[NumPair, SumResult, NotUsed] = {
logger.info(s"*** calling sumPair ... ***")
Flow[NumPair].map {
case NumPair(a,b) => {
logger.info(s"serving ${a} + ${b} = ???")
SumResult(a + b)
}
}
}
产生的客户端stub源代码如下:
class SumNumbersStub(
channel: Channel,
options: CallOptions = CallOptions.DEFAULT
) extends AbstractStub[SumNumbersStub](channel, options) with SumNumbers {
override def sumPair: Flow[learn.grpc.akka.stream.services.sum.NumPair, learn.grpc.akka.stream.services.sum.SumResult, NotUsed] =
Flow[learn.grpc.akka.stream.services.sum.NumPair].flatMapConcat(request =>
Source.fromFuture(
Grpc.guavaFuture2ScalaFuture(
ClientCalls.futureUnaryCall(channel.newCall(METHOD_SUM_PAIR, options), request)
)
)
)
def stub(channel: Channel): SumNumbersStub = new SumNumbersStub(channel)
我们可以通过stub来调用sumPair方法,如下:
val channel = ManagedChannelBuilder
.forAddress(host,port)
.usePlaintext(true)
.build()
val stub = SumGrpcAkkaStream.stub(channel)
def addPair(num1: Int, num2: Int): Source[String,NotUsed] = {
logger.info(s"Requesting to add $num1, $num2")
Source
.single(NumPair(num1,num2))
.via(stub.sumPair)
.map(r => s"the result: ${r.result}")
}
下面是Unary-Call的具体调用方式:
object UnaryCallClient extends App {
implicit val system = ActorSystem("UnaryClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.addPair(29,33).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
在Server-Streaming中一个request返回的是stream of responses。IDL的描述如下:
service SumNumbers {
rpc SumPair(NumPair) returns (SumResult) {}
rpc GenIncsFrom(Num) returns (stream Num) {}
}
编译后自动产生的service trait如下:
trait SumNumbers extends AbstractService {
override def serviceCompanion = SumNumbers
def sumPair: Flow[learn.grpc.akka.stream.services.sum.NumPair, learn.grpc.akka.stream.services.sum.SumResult, NotUsed]
def genIncsFrom: Flow[learn.grpc.akka.stream.services.sum.Num, learn.grpc.akka.stream.services.sum.Num, NotUsed]
}
这个服务函数genIncsFrom是Flow[Num,Num,NotUsed],它的具体实现如下:
class gRPCAkkaStreamService extends SumGrpcAkkaStream.SumNumbers {
val logger: Logger = Logger.getLogger(classOf[gRPCAkkaStreamService].getName)
override def genIncsFrom: Flow[Num, Num, NotUsed] = {
logger.info("*** calling genIncsFrom")
Flow[Num].mapConcat {
n => (1 to n.num).map {m =>
logger.info(s"genIncFrom producing num: ${m}")
Num(m)
}
}
}
}
因为输出response是一个stream,可以用mapConcat展平Seq来产生一个。在客户方调用服务函数genIncsFrom的方式如下:
def genIncNumbers(len: Int): Source[Int,NotUsed] = {
logger.info(s"Requesting to produce ${len} inc numbers")
Source
.single(Num(len))
.via(stub.genIncsFrom)
.map(n => n.num)
}
我们还是用runForeach来运算这个Source:
object ServerStreamingClient extends App {
implicit val system = ActorSystem("ServerStreamingClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.genIncNumbers(5).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
再来看看Client-Streaming是如何通过reactive-stream实现的。IDL服务描述如下:
service SumNumbers {
rpc SumPair(NumPair) returns (SumResult) {}
rpc GenIncsFrom(Num) returns (stream Num) {}
rpc SumStreamNums(stream Num) returns (SumResult) {}
}
自动产生的service接口如下:
trait SumNumbers extends AbstractService {
override def serviceCompanion = SumNumbers
def sumPair: Flow[learn.grpc.akka.stream.services.sum.NumPair, learn.grpc.akka.stream.services.sum.SumResult, NotUsed]
def genIncsFrom: Flow[learn.grpc.akka.stream.services.sum.Num, learn.grpc.akka.stream.services.sum.Num, NotUsed]
def sumStreamNums: Flow[learn.grpc.akka.stream.services.sum.Num, learn.grpc.akka.stream.services.sum.SumResult, NotUsed]
}
sumStreamNums Flow实现如下:
override def sumStreamNums: Flow[Num, SumResult, NotUsed] = {
logger.info("*** calling sumStreamNums")
Flow[Num].fold(SumResult(0)) {
case (a, b) =>
logger.info(s"receiving operand ${b.num}")
SumResult(b.num + a.result)
}
}
request是一个stream,可以用aggregation来汇总成一个response。在客户端调用stub.sumStreamNums:
def sumManyNumbers(nums: Seq[Int]): Source[String,NotUsed] = {
logger.info(s"Requesting to sum up ${nums}")
Source(nums.map(Num(_)).to[collection.immutable.Iterable])
.via(stub.sumStreamNums)
.map(r => s"the result: ${r.result}")
}
object ClientStreamingClient extends App {
implicit val system = ActorSystem("ClientStreamingClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.sumManyNumbers(Seq(12,4,8,19)).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
最后我们示范一下BiDirectional-Streaming。先用IDL定义一个流输入输出的服务函数keepAdding:
service SumNumbers {
rpc SumPair(NumPair) returns (SumResult) {}
rpc GenIncsFrom(Num) returns (stream Num) {}
rpc SumStreamNums(stream Num) returns (SumResult) {}
rpc KeepAdding(stream Num) returns (stream SumResult) {}
}
这个函数的实现代码:
override def keepAdding: Flow[Num, SumResult, NotUsed] = {
Flow[Num].scan(SumResult(0)) {
case (a,b) =>
logger.info(s"receiving operand ${b.num}")
SumResult(b.num + a.result)
}
}
这个服务函数的作用是把一串输入数字逐个相加并输出当前结果。我们可以用scan来实现这样的功能。下面是客户端调用服务的示范代码:
def ContSum(nums: Seq[Int]): Source[String,NotUsed] = {
logger.info(s"Requesting to sum up ${nums}")
Source(nums.map(Num(_)).to[collection.immutable.Iterable])
.throttle(1, 500.millis, 1, ThrottleMode.shaping)
.map { n =>
logger.info(s"Sending number: $n")
n
}
.via(stub.keepAdding)
.map(r => s"current sum = ${r.result}")
}
用下面这段代码运算:
object BiDiStreamingClient extends App {
implicit val system = ActorSystem("BiDiStreamingClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.ContSum(Seq(12,4,8,19)).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
好,下面是本次讨论涉及的所有源代码:
project/scalapb.sbt
addSbtPlugin("com.thesamet" % "sbt-protoc" % "0.99.18")
resolvers += Resolver.bintrayRepo("beyondthelines", "maven")
libraryDependencies ++= Seq(
"com.thesamet.scalapb" %% "compilerplugin" % "0.7.1",
"beyondthelines" %% "grpcakkastreamgenerator" % "0.0.5"
)
build.sbt
import scalapb.compiler.Version.scalapbVersion
import scalapb.compiler.Version.grpcJavaVersion
name := "gRPCAkkaStreamDemo"
version := "0.1"
scalaVersion := "2.12.6"
resolvers += Resolver.bintrayRepo("beyondthelines", "maven")
libraryDependencies ++= Seq(
"com.thesamet.scalapb" %% "scalapb-runtime" % scalapbVersion % "protobuf",
"io.grpc" % "grpc-netty" % grpcJavaVersion,
"com.thesamet.scalapb" %% "scalapb-runtime-grpc" % scalapbVersion,
"io.monix" %% "monix" % "2.3.0",
// for GRPC Akkastream
"beyondthelines" %% "grpcakkastreamruntime" % "0.0.5"
)
PB.targets in Compile := Seq(
scalapb.gen() -> (sourceManaged in Compile).value,
// generate the akka stream files
grpc.akkastreams.generators.GrpcAkkaStreamGenerator() -> (sourceManaged in Compile).value
)
src/main/protobuf/sum.proto
syntax = "proto3";
package learn.grpc.akka.stream.services;
message NumPair {
int32 num1 = 1;
int32 num2 = 2;
}
message Num {
int32 num = 1;
}
message SumResult {
int32 result = 1;
}
service SumNumbers {
rpc SumPair(NumPair) returns (SumResult) {}
rpc GenIncsFrom(Num) returns (stream Num) {}
rpc SumStreamNums(stream Num) returns (SumResult) {}
rpc KeepAdding(stream Num) returns (stream SumResult) {}
}
src/main/scala/gRPCAkkaStreamService.scala
package learn.grpc.akka.stream.services.impl
import akka.NotUsed
import akka.stream.scaladsl.Flow
import learn.grpc.akka.stream.services.sum._
import java.util.logging.Logger
class gRPCAkkaStreamService extends SumGrpcAkkaStream.SumNumbers {
val logger: Logger = Logger.getLogger(classOf[gRPCAkkaStreamService].getName)
override def sumPair: Flow[NumPair, SumResult, NotUsed] = {
logger.info(s"*** calling sumPair ... ***")
Flow[NumPair].map {
case NumPair(a, b) => {
logger.info(s"serving ${a} + ${b} = ???")
SumResult(a + b)
}
}
}
override def genIncsFrom: Flow[Num, Num, NotUsed] = {
logger.info("*** calling genIncsFrom ... ***")
Flow[Num].mapConcat {
n =>
(1 to n.num).map { m =>
logger.info(s"genIncFrom producing num: ${m}")
Num(m)
}
}
}
override def sumStreamNums: Flow[Num, SumResult, NotUsed] = {
logger.info("*** calling sumStreamNums ... ***")
Flow[Num].fold(SumResult(0)) {
case (a, b) =>
logger.info(s"receiving operand ${b.num}")
SumResult(b.num + a.result)
}
}
override def keepAdding: Flow[Num, SumResult, NotUsed] = {
Flow[Num].scan(SumResult(0)) {
case (a,b) =>
logger.info(s"receiving operand ${b.num}")
SumResult(b.num + a.result)
}
}
}
src/main/scala/gRPCAkkaStreamServer.scala
package learn.grpc.akka.stream.server
import java.util.logging.Logger
import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import io.grpc.Server
import learn.grpc.akka.stream.services.impl.gRPCAkkaStreamService
import io.grpc.ServerBuilder
import learn.grpc.akka.stream.services.sum._
class gRPCServer(server: Server) {
val logger: Logger = Logger.getLogger(classOf[gRPCServer].getName)
def start(): Unit = {
server.start()
logger.info(s"Server started, listening on ${server.getPort}")
sys.addShutdownHook {
// Use stderr here since the logger may has been reset by its JVM shutdown hook.
System.err.println("*** shutting down gRPC server since JVM is shutting down")
stop()
System.err.println("*** server shut down")
}
()
}
def stop(): Unit = {
server.shutdown()
}
/**
* Await termination on the main thread since the grpc library uses daemon threads.
*/
def blockUntilShutdown(): Unit = {
server.awaitTermination()
}
}
object DemoServer extends App {
implicit val system = ActorSystem("UnaryServer")
implicit val mat = ActorMaterializer.create(system)
val server = new gRPCServer(
ServerBuilder
.forPort(50051)
.addService(
SumGrpcAkkaStream.bindService(
new gRPCAkkaStreamService
)
).build()
)
server.start()
// UnaryServer.blockUntilShutdown()
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
src/main/scala/gRPCAkkaStreamClient.scala
package learn.grpc.akka.stream.client
import learn.grpc.akka.stream.services.sum._
import java.util.logging.Logger
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import akka.stream.{ActorMaterializer, ThrottleMode}
import scala.concurrent.duration._
import io.grpc._
class gRPCAkkaStreamClient(host: String, port: Int) {
val logger: Logger = Logger.getLogger(classOf[gRPCAkkaStreamClient].getName)
val channel = ManagedChannelBuilder
.forAddress(host,port)
.usePlaintext(true)
.build()
val stub = SumGrpcAkkaStream.stub(channel)
def addPair(num1: Int, num2: Int): Source[String,NotUsed] = {
logger.info(s"Requesting to add $num1, $num2")
Source
.single(NumPair(num1,num2))
.via(stub.sumPair)
.map(r => s"the result: ${r.result}")
}
def genIncNumbers(len: Int): Source[Int,NotUsed] = {
logger.info(s"Requesting to produce ${len} inc numbers")
Source
.single(Num(len))
.via(stub.genIncsFrom)
.map(n => n.num)
}
def sumManyNumbers(nums: Seq[Int]): Source[String,NotUsed] = {
logger.info(s"Requesting to sum up ${nums}")
Source(nums.map(Num(_)).to[collection.immutable.Iterable])
.throttle(1, 500.millis, 1, ThrottleMode.shaping)
.map { n =>
logger.info(s"Sending number: $n")
n
}
.via(stub.sumStreamNums)
.map(r => s"the result: ${r.result}")
}
def ContSum(nums: Seq[Int]): Source[String,NotUsed] = {
logger.info(s"Requesting to sum up ${nums}")
Source(nums.map(Num(_)).to[collection.immutable.Iterable])
.throttle(1, 500.millis, 1, ThrottleMode.shaping)
.map { n =>
logger.info(s"Sending number: $n")
n
}
.via(stub.keepAdding)
.map(r => s"current sum = ${r.result}")
}
}
object UnaryCallClient extends App {
implicit val system = ActorSystem("UnaryClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.addPair(29,33).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
object ServerStreamingClient extends App {
implicit val system = ActorSystem("ServerStreamingClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.genIncNumbers(5).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
object ClientStreamingClient extends App {
implicit val system = ActorSystem("ClientStreamingClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.sumManyNumbers(Seq(12,4,8,19)).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
object BiDiStreamingClient extends App {
implicit val system = ActorSystem("BiDiStreamingClient")
implicit val mat = ActorMaterializer.create(system)
val client = new gRPCAkkaStreamClient("localhost", 50051)
client.ContSum(Seq(12,4,8,19)).runForeach(println)
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}