语音唤醒论文【转】

  • 最近沉迷于语音唤醒,顺便在学术界上把语音唤醒摸个底,稍后可能放出语音唤醒的相关调研报告
  • 带链接的都是有源码的
  • 按照时间线划分

  

第一部分 来自arXiv

arXiv 中搜索关键词 “Small-footprint Keyword Spotting” 的 2018 - 2020 的paper

  

arXiv:2002.10851 [pdf, other]
Small-Footprint Open-Vocabulary Keyword Spotting with Quantized LSTM Networks

arXiv:1912.07575 [pdf, other] cs.CL cs.LG
Predicting detection filters for small footprint open-vocabulary keyword spotting

arXiv:1912.05124 [pdf, other] cs.SD cs.CL cs.LG eess.AS
Small-footprint Keyword Spotting with Graph Convolutional Network

arXiv:1911.02086 [pdf, other] eess.AS cs.CL cs.SD
Small-Footprint Keyword Spotting on Raw Audio Data with Sinc-Convolutions

https://paperswithcode.com/paper/small-footprint-keyword-spotting-on-raw-audio

arXiv:1910.05171 [pdf, other] cs.LG cs.CL eess.AS stat.ML
Query-by-example on-device keyword spotting

arXiv:1907.01448 [pdf, other] eess.AS cs.SD
Sub-band Convolutional Neural Networks for Small-footprint Spoken Term Classification

arXiv:1906.09417 [pdf, other] cs.SD cs.HC cs.LG eess.AS
Keyword Spotting for Hearing Assistive Devices Robust to External Speakers

arXiv:1906.08415 [pdf, other] cs.SD cs.LG cs.MM eess.AS
A Monaural Speech Enhancement Method for Robust Small-Footprint Keyword Spotting

arXiv:1811.07684 [pdf, other] cs.LG cs.CL cs.SD eess.AS stat.ML
Efficient keyword spotting using dilated convolutions and gating

https://paperswithcode.com/paper/efficient-keyword-spotting-using-dilated

arXiv:1811.00348 [pdf, ps, other] cs.SD eess.AS
Sequence-to-sequence Models for Small-Footprint Keyword Spotting

arXiv:1803.10916 [pdf, other] cs.SD cs.CL eess.AS
Attention-based End-to-End Models for Small-Footprint Keyword Spotting

第二部分

知乎、论文、简书中摘取

  

2019年
  • Temporal Convolution for Real-time Keyword Spotting on Mobile Devices
  • https://paperswithcode.com/paper/temporal-convolution-for-real-time-keyword
2018年  
  • Shan, et al., “Attention-based end-to-end models for small-footprint keyword spotting”, Interspeech, 2018. 注意力
  • Zhang H, Zhang J, Wang Y. Sequence-to-sequence models for small-footprint keywordspotting[J]. arXiv preprint arXiv:1811.00348, 2018.

        基于序列到序列的唤醒词识别模型

  • Deep residual learning for small-footprint keyword spotting[C].IEEE InternationalConference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Calgary, AB, Canada,Apr.15-20, 2018: 5484-5488

        https://paperswithcode.com/paper/deep-residual-learning-for-small-footprint
        深度残差学习和扩展卷积的唤醒词识别方法

2017年
  • Audhkhasi, et al., “End-to-end ASR-free keyword search from speech”, ICASSP, 2017.

         使用一个 CRNN 语言模型把唤醒词编码成一个嵌入向量。

  • Honk: A PyTorch Reimplementation of Convolutional Neural Networks for Keyword Spotting

        https://paperswithcode.com/paper/honk-a-pytorch-reimplementation-of

  • He, et al., “Streaming small-footprint keyword spotting using sequence-to-sequence models”, ASRU, 2017.

         基于 RNN 的端到端训练的序列到序列的唤醒词模型

  • Arık, et al., “Convolutional recurrent neural networks for small-footprint keyword spotting”, arxiv:1703.05390. 百度

        基于CRNN 的唤醒词识别方法
        Hello Edge: Keyword Spotting on Microcontrollers
        https://paperswithcode.com/paper/hello-edge-keyword-spotting-on

  • F. Ge and Y. Yan, “Deep neural network based wake-up-word speech recognition with two-stage detection”, ICASSP, 2017.

        固定长度的嵌入向量,用序列形式
        基于DNN的两阶段检测的唤醒词识别系统

  • Compressed time delay neural network for small-footprint keyword spotting - 2017 INTERSPEECH

         为了解决 DNN 带来的搜索延迟和低阶特性
         低秩权重矩阵改进了 DNN 网络 23

  • Kumatani, et al., “Direct modeling of raw audio with DNNs for wake word detection”, ASRU, 2017.

         提取MFCC特征通过DNN进行训练,类似的有陈果果2014

2016年 
  • Sun M, Raju A, Tucker G, et al. Max-pooling loss training of long short-term memory networksfor small-footprint keyword spotting[C].IEEE Spoken Language Technology Workshop (SLT).IEEE, San Diego, CA, USA, Dec.13-16, 2016: 474-480.

        用后验平滑的评估 方法估计唤醒词识别性能
        最大池化的损失函数训练 LSTM 网络

  • “Investigating neural network based query-by-example keyword spotting approach for personalized wake-up word detection in Mandarin Chinese”, Int’l Symposium on Chinese Spoken Language Processing, 2016.

         提出模板匹配,LSTM提取特征,固定长度和特征向量

2015年
  • T. N. Sainath and C. Parada, “Convolutional neural networks for small-footprint keyword spotting”, Interspeech, 2015.

         基于 CNN 的唤醒词识别的方法

  • Chen, et al., “Query-by-example keyword spotting using long short-term memory networks”, ICASSP, 2015.

         先用神经网络提取特征然后用时间动态规整对唤醒词进行判断

2014年
  •   G. Chen, et al., “Small-footprint keyword spotting using deep neural networks”, ICASSP, 2014.
  • 经典,DNN,陈果果,拜读

 

other 往前就是传统的文章了,暂时不建议阅读

2006年,提出唤醒词和唤醒词识别
2009年,韵律特征研究
HMM 训练声学模型,用SVM划分是否唤醒词
动态时间规整算法
   模板匹配,距离测量
   麦克风阵列检测唤醒词
2014年,嵌入式平台的唤醒词识别系统开发

  


原文链接:https://blog.csdn.net/weixin_37598106/article/details/105439687

posted on 2021-06-07 14:20  袁军峰  阅读(559)  评论(0编辑  收藏  举报

导航