pytorch笔记1
pytorch基础知识
import torch x = torch.tensor([2,3,4], dtype=torch.float) # 创建一个Tensor,值为[2.,3.,4.],类型为 float # 创建一个需要求 梯度的 tensor。 x2 = torch.tensor([2,3,4], dtype=torch.float, requires_grad=True) x.size() torch.Size([3]) a=1;b=2; a.add_(b) # 所有带 _ 的operation,都会更改调用对象的值, #例如 a=1;b=2; a.add_(b); a就是3了,没有 _ 的operation就没有这种效果,只会返回运算结果 torch.cuda.is_available() import torch x = torch.tensor([1,1,1,1,1], dtype=torch.float, requires_grad=True) y = x * 2 grads = torch.FloatTensor([1,2,3,4,5]) y.backward(grads)#如果y是scalar的话,那么直接y.backward(),然后通过x.grad方式,就可以得到var的梯度 x.grad #如果y不是scalar,那么只能通过传参的方式给x指定梯度
神经网络
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 3x3 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 3) self.conv2 = nn.Conv2d(6, 16, 3) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net)#打印网络结构 params = list(net.parameters()) print(len(params)) print(params[0].size()) # conv1's .weight #让我们尝试一个32x32随机输入 input = torch.randn(1, 1, 32, 32)#(1,1,32,32)大小的正态分布 out = net(input) print(out) #使用随机梯度将所有参数和反向传播的梯度缓冲区归零 net.zero_grad() out.backward(torch.randn(1, 10)) #损失函数 output = net(input) target = torch.randn(10) # a dummy target, for example target = target.view(1, -1) # make it the same shape as output criterion = nn.MSELoss() loss = criterion(output, target) print(loss) print(loss.grad_fn) # MSELoss print(loss.grad_fn.next_functions[0][0]) # Linear print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU #反向传播 net.zero_grad() # zeroes the gradient buffers of all parameters print('conv1.bias.grad before backward') print(net.conv1.bias.grad) loss.backward() print('conv1.bias.grad after backward') print(net.conv1.bias.grad) #更新权重 import torch.optim as optim # create your optimizer optimizer = optim.SGD(net.parameters(), lr=0.01) # in your training loop: optimizer.zero_grad() # zero the gradient buffers output = net(input) loss = criterion(output, target) loss.backward() optimizer.step() # Does the update
一般结构
import torch.nn as nn import torch.nn.functional as F class Net(nn.Module):#需要继承这个类 def __init__(self): super(Net, self).__init__() #建立了两个卷积层,self.conv1, self.conv2,注意,这些层都是不包含激活函数的 self.conv1 = nn.Conv2d(1, 6, 5) # 1 input image channel, 6 output channels, 5x5 square convolution kernel self.conv2 = nn.Conv2d(6, 16, 5) #三个全连接层 self.fc1 = nn.Linear(16*5*5, 120) # an affine operation: y = Wx + b self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): #注意,2D卷积层的输入data维数是 batchsize*channel*height*width x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv2(x)), 2) # If the size is a square you can only specify a single number x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() # create your optimizer optimizer = optim.SGD(net.parameters(), lr = 0.01) # in your training loop: for i in range(num_iteations): optimizer.zero_grad() # zero the gradient buffers,如果不归0的话,gradients会累加 output = net(input) # 这里就体现出来动态建图了,你还可以传入其他的参数来改变网络的结构 loss = criterion(output, target) loss.backward() # 得到grad,i.e.给Variable.grad赋值 optimizer.step() # Does the update,i.e. Variable.data -= learning_rate*Variable.grad