Codeforces Round 853 Div2 A-D 题解
codeforces round 853
好久没有做题了呢,今天就来看看题目。
然后手贱点进去了个cn场,做了半天发现不对劲,赶紧撤退。再开一场吧。
A. Serval and Mocha's Array
这道题让所有长度大于2的前缀的gcd小于本身的长度,问是否可行
乍一听很吓唬人,但是我们可以想一下,首先如果都是素数,那么gcd肯定是1,然后1和其他的gcd又是1,所以一定是满足的。
那么2呢?我们可以发现,如果是2的倍数,那么gcd肯定是2,如果是奇数,那么肯定是1,又可以归到1上了
So,我们只需要找到gcd为小于2的两个数字让他们做前缀就好了
AC 代码
#include <bits/stdc++.h>
using namespace std;
constexpr int limit = (4e5 + 5);//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-9
#define FASTIO ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);
#define pi(a, b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\dabiao.txt", "wt", stdout)
typedef long long ll;
typedef unsigned long long ull;
char buf[1 << 23], *p1 = buf, *p2 = buf, obuf[1 << 23], *O = obuf;
inline ll read() {
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
ll sign = 1, x = 0;
char s = getchar();
while (s > '9' || s < '0') {
if (s == '-')sign = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * sign;
#undef getchar
}//快读
void print(ll x) {
if (x / 10) print(x / 10);
*O++ = x % 10 + '0';
}
void write(ll x, char c = 't') {
if (x < 0)putchar('-'), x = -x;
print(x);
if (!isalpha(c))*O++ = c;
fwrite(obuf, O - obuf, 1, stdout);
O = obuf;
}
int n;
int a[limit];
void solve() {
cin>>n;
rep(i,1, n){
cin>>a[i];
}
rep(i,1,n){
rep(j, i + 1, n){
if(gcd(a[i], a[j]) <= 2){
cout<<"Yes"<<endl;
return;
}
}
}
cout<<"No"<<endl;
}
int32_t main() {
#ifdef LOCAL
FOPEN;
// FOUT;
#endif
FASTIO
int kase;
cin>>kase;
while (kase--)
invoke(solve);
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << "s";
return 0;
}
B. Serval and Inversion Magic
这道题是给一个01串,问是否可以通过flip一个区间来得到一个回文串
这道题刚开始愣了半天,但是我仔细想了下发现要从结果反推原因,我们可以发现,如果有需要反转的区间(if any)存在,那么这个区间一定是连续的,不然就无法通过一次反转得到回文串了。
那么我们就可以贪心去找这个串,然后判断下是否连续就好了
AC 代码
#include <bits/stdc++.h>
using namespace std;
constexpr int limit = (4e5 + 5);//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-9
#define FASTIO ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);
#define pi(a, b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\dabiao.txt", "wt", stdout)
typedef long long ll;
typedef unsigned long long ull;
char buf[1 << 23], *p1 = buf, *p2 = buf, obuf[1 << 23], *O = obuf;
inline ll read() {
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
ll sign = 1, x = 0;
char s = getchar();
while (s > '9' || s < '0') {
if (s == '-')sign = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * sign;
#undef getchar
}//快读
void print(ll x) {
if (x / 10) print(x / 10);
*O++ = x % 10 + '0';
}
void write(ll x, char c = 't') {
if (x < 0)putchar('-'), x = -x;
print(x);
if (!isalpha(c))*O++ = c;
fwrite(obuf, O - obuf, 1, stdout);
O = obuf;
}
int n;
int a[limit];
void solve() {
cin>>n;
string str;
cin>>str;
str = " " + str;
int mid = (n + 1) / 2;
int l = 1, r = n;
int num = 0;
int last = -1;
rep(i, 1, n / 2){
if(str[i] != str[n - i + 1]){
if(num and i - last > 1){
cout<<"NO"<<endl;
return;
}
num++;
last = i;
}
}
cout<<"YES"<<endl;
}
int32_t main() {
#ifdef LOCAL
FOPEN;
// FOUT;
#endif
FASTIO
int kase;
cin>>kase;
while (kase--)
invoke(solve);
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << "s";
return 0;
}
C. Serval and Toxel's Arrays
这题很绕,大概意思是给一个串和修改一些位置上的元素,过程中这个数组始终是pairwise distinct的,最后所有的历史version数组pair up,每个pair的贡献是这两个数字拼接起来不重复元素的个数,问最后所有pair加起来的答案是多少
这个题,有点绕,确实很绕,我弟一开始没看懂,但是后面看明白了。
首先这种题我们要考虑贡献,我们需要统计元素的出现次数。然后观察样例,m次操作总共会产生m + 1个数组,我们把结果数组分为旱涝保收的前半部分和optional的后半部分,然后我们发现前半部分的每个元素贡献是出现次数的等差数列求和,后半部分是(出现次数) * (没出现次数)
很简单的一道题
AC 代码
#include <bits/stdc++.h>
using namespace std;
constexpr int limit = (4e5 + 5);//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-9
#define FASTIO ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);
#define pi(a, b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\dabiao.txt", "wt", stdout)
typedef long long ll;
typedef unsigned long long ull;
char buf[1 << 23], *p1 = buf, *p2 = buf, obuf[1 << 23], *O = obuf;
inline ll read() {
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
ll sign = 1, x = 0;
char s = getchar();
while (s > '9' || s < '0') {
if (s == '-')sign = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * sign;
#undef getchar
}//快读
void print(ll x) {
if (x / 10) print(x / 10);
*O++ = x % 10 + '0';
}
void write(ll x, char c = 't') {
if (x < 0)putchar('-'), x = -x;
print(x);
if (!isalpha(c))*O++ = c;
fwrite(obuf, O - obuf, 1, stdout);
O = obuf;
}
int n,m;
int a[limit];
void solve() {
cin>>n>>m;
map<int, int>mp;//记录每个数字出现了多少次
map<int, int>last;
rep(i,1,n){
cin>>a[i];
mp[a[i]];
last[a[i]];
}
rep(i, 1, m){
int p, v;
cin>>p>>v;
if(a[p] == v)continue;
int num = a[p];
mp[num] += i - last[num];
last.erase(num);
last[v] = i;
a[p] = v;
}
for(auto [k, v] : last){
// cout<<k<<" "<<v<<endl;
mp[k] += m - v + 1;
}
ll ans = 0;
for(auto [k, v] : mp){
// cout<<k<<" "<<v * (m + 1 - v)<<endl;
ans += 1ll * v * (m + 1 - v) ;
ans += 1ll * v * (v - 1) / 2;
}
cout<<ans<<endl;
}
int32_t main() {
#ifdef LOCAL
FOPEN;
// FOUT;
#endif
FASTIO
int kase;
cin>>kase;
while (kase--)
invoke(solve);
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << "s";
return 0;
}
D. Serval and Shift-Shift-Shift
这个题给两个01串a和b,每次操作可以选一个1-n的数字
然后
\(a \oplus (a >>k)\)
or
\(a \oplus (a <<k)\)
然后要求让a最多操作n次变成b,给出方案,如果不可行输出-1
这个题,题目给了暗示,就是操作n次,那么就提示我们给每个位置分配一次。
首先考虑一下什么情况是不可行的,1可以在xor里面变成0,但是0不可能变成1,所以如果a的某一位是0,b的某一位是1,那么就不可能变成b,所以我们可以先把这种情况排除掉。反过来也一样
然后因为我们不希望xor影响我们的前面配好的,所以我们就从左边开始,首先找到在b的msb左边的所有为1的bit,然后我们找到a的1,顶上去,把这些地方变成1,0不用管
之后我们去扫b的msb右边,然后我们可以用刚刚配好的1去把当前的0或者1变成1和0,从左到右,我们只shift right,因为我们不想干涉前面配好的,shift right前面的1都会和0异或变成1,0和0还是0,所以不影响,然后记录下这个shift的offset,就是答案
AC 代码
#include <bits/stdc++.h>
using namespace std;
constexpr int limit = (4e5 + 5);//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-9
#define FASTIO ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);
#define pi(a, b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\dabiao.txt", "wt", stdout)
typedef long long ll;
typedef unsigned long long ull;
char buf[1 << 23], *p1 = buf, *p2 = buf, obuf[1 << 23], *O = obuf;
inline ll read() {
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
ll sign = 1, x = 0;
char s = getchar();
while (s > '9' || s < '0') {
if (s == '-')sign = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * sign;
#undef getchar
}//快读
void print(ll x) {
if (x / 10) print(x / 10);
*O++ = x % 10 + '0';
}
void write(ll x, char c = 't') {
if (x < 0)putchar('-'), x = -x;
print(x);
if (!isalpha(c))*O++ = c;
fwrite(obuf, O - obuf, 1, stdout);
O = obuf;
}
int n,m;
int a[limit];
void solve() {
string pa,pb;
cin>>n;
cin>>pa>>pb;
pa = " " + pa;
pb = " " + pb;
int cnt_a = count(pa.begin(),pa.end(),'1');
int cnt_b = count(pb.begin(),pb.end(),'1');
if(pa == pb){
cout<<0<<endl;
return;
}
if (!cnt_a or !cnt_b) {
cout<<-1<<endl;
return;
}
int fst = 0, scd = 0;
rep(i,1,n){
if(pa[i] == '1') {
fst = i;
break;
}
}
vector<int>ans;
rep(i,1,n){
if(pb[i] == '1') {
scd = i;
break;
}
}
auto bit_xor = [](char x, char y){
return (x - '0') ^ (y - '0') + '0';
};
auto shift_left = [&](int x){
rep(i, 1, n - x){
pa[i] = bit_xor(pa[i], pa[i + x]);
}
};
auto shift_right = [&](int x){
per(i, 1, n - x){
pa[i + x] = bit_xor(pa[i], pa[i + x]);
}
};
per(i, 1, scd){
if(pa[i] == pb[i])
continue;
per(j, 1, n){
if(pa[j] == '1'){
int offset = j - i;
ans.push_back(offset);
if (offset > 0) {
shift_left(offset);
} else {
shift_right(-offset);
}
break;
}
}
}
rep(i, scd + 1, n){
if(pa[i] == pb[i])
continue;
int offset = scd - i;
ans.push_back(offset);
shift_right(-offset);
}
cout<<ans.size()<<"\n";
for(auto i : ans){
cout<<i<<" ";
}
cout<<"\n";
}
int32_t main() {
#ifdef LOCAL
FOPEN;
// FOUT;
#endif
FASTIO
int kase;
cin>>kase;
while (kase--)
invoke(solve);
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << "s";
return 0;
}
救命,现在菜狗一个,啥都不行,这可得支愣起来,不然咋办啊!