2021 ICPC North American Qualifier C. Common Factors(数论 + 找规律)
昨天这道题属实有点唬人
没能打成ICPC就场外观战,今年一众oier学弟真是让我开了眼,换到今年我估计无了,不过有luka,感觉我们组队的话可以9题左右
首先是问F(i) = 2-i的非互质数量,问给出一个n,找出一个k属于n,范围1e18,问max(f(k) / k)
然后经过群友的提醒打表之后发现这个分子的数目是确定的
为Q = sigma(prime[i]), 每段的数量为 Q * prime[i + 1] - Q, 分子的数量是和Q不互质的数量,那么就是phi(Q),
所以答案为Q - phi(Q) / Q
刚开始以为这个phi开不下就没当回事儿,结果发现可以23333
然后特别注意一下又是int128的问题,出题人大概率拿py写的标程,然后cpp炸精度了,真尼玛坑爹
#include <bits/stdc++.h> using namespace std; #define limit (1000000 + 5)//防止溢出 #define INF 0x3f3f3f3f #define inf 0x3f3f3f3f3f #define lowbit(i) i&(-i)//一步两步 #define EPS 1e-9 #define FASTIO ios::sync_with_stdio(false);cin.tie(0),cout.tie(0); #define ff(a) printf("%d\n",a ); #define pi(a, b) pair<a,b> #define rep(i, a, b) for(ll i = a; i <= b ; ++i) #define per(i, a, b) for(ll i = b ; i >= a ; --i) #define MOD 998244353 #define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next) #define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\data.txt", "rt", stdin) #define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\dabiao.txt", "wt", stdout) typedef long long ll; typedef unsigned long long ull; char buf[1 << 23], *p1 = buf, *p2 = buf, obuf[1 << 23], *O = obuf; inline ll read() { #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) ll sign = 1, x = 0; char s = getchar(); while (s > '9' || s < '0') { if (s == '-')sign = -1; s = getchar(); } while (s >= '0' && s <= '9') { x = (x << 3) + (x << 1) + s - '0'; s = getchar(); } return x * sign; #undef getchar }//快读 void print(ll x) { if (x / 10) print(x / 10); *O++ = x % 10 + '0'; } void write(ll x, char c = 't') { if (x < 0)putchar('-'), x = -x; print(x); if (!isalpha(c))*O++ = c; fwrite(obuf, O - obuf, 1, stdout); O = obuf; } const ll mod = 1e9 + 7; ll quickPow(ll base, ll expo) { ll ans = 1; while (expo) { if (expo & 1)(ans *= base) %= mod; expo >>= 1; base = base * base; base %= mod; } return ans % mod; } ll C(ll n, ll m) { if (n < m)return 0; ll x = 1, y = 1; if (m > n - m)m = n - m; rep(i, 0, m - 1) { x = x * (n - i) % mod; y = y * (i + 1) % mod; } return x * quickPow(y, mod - 2) % mod; } ll lucas(ll n, ll m) { return !m || n == m ? 1 : C(n % mod, m % mod) * lucas(n / mod, m / mod) % mod; } ll fact[limit]; void calc(){ fact[0] = 1; rep(i,1,1e3)fact[i] = (fact[i - 1] * i) % mod; } ll A(ll x, ll y){ return (C(x,y) * fact[y]) % mod; } ll euler(ll x) { int rs=x,a=x; for(int i=2; i*i<=a; i++) if(a%i==0) // 最开始先 a%i == 0 进去马上执行 rs 操作,是因为确保了 i 肯定是素数 { rs=rs/i*(i-1); // 先进行除法是为了防止中间数据的溢出 while(a%i==0) a/=i; // 确保下一个 i 是素数 } if(a>1) rs=rs/a*(a-1); return rs; } int kase; ll n, m, k; int prime[limit],tot,num[limit],phi[limit],miu[limit]; void get_prime(const int &n = 1e6){ memset(num,1,sizeof(num)); num[1] = num[0] = 0; miu[1] = 1; rep(i,2,n){ if(num[i])prime[++tot] = i,miu[i] = -1,phi[i] = i - 1; for(int j = 1; j <= tot && prime[j] * i <= n ; ++j){ num[prime[j] * i] = 0; if(i % prime[j] == 0){ miu[i * prime[j]] = 0; break; }else{ miu[i * prime[j]] = -miu[i];//莫比乌斯函数 } } } }//素数筛 int a[limit]; void solve() { cin>>n; get_prime(); ll product = 1; ll assigned = 1; ll p = -1, q= -1; rep(i,1,1e18){ product *= prime[i]; ll next = prime[i + 1] * product; ll gap = next - product; if(n - assigned <= gap ){//找到了 q = product; p = 0; p = (q - euler(q)); break; } assigned += gap; } ll gc = gcd(p, q); p /= gc; q /= gc; cout<<p<<"/"<<q<<endl; } int32_t main() { #ifdef LOCAL FOPEN; // FOUT; #endif FASTIO // cin >> kase; // while (kase--) solve(); cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << "s\n"; return 0; }
天才选手zerol的主页:https://zerol.me/
|
WeepingDemon的个人主页:https://weepingdemon.gitee.io/blog/