引导聚合算法(装袋;bagging)的python实现
# 输入csv格式的数据集,输出模型的平均准确率
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.ensemble import BaggingClassifier
if __name__ == '__main__':
dataset = np.array(pd.read_csv("sonar.csv", sep=',', header=None))
k_Cross = KFold(n_splits=8, random_state=0, shuffle=True)
index = 0
score = np.array([])
data,label = dataset[:,:-1],dataset[:,-1]
for train_index, test_index in k_Cross.split(dataset):
train_data, train_label = data[train_index, :], label[train_index]
test_data, test_label = data[test_index, :], label[test_index]
tree = DecisionTreeClassifier()
model = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0,
bootstrap=True, random_state=1)
model.fit(train_data, train_label)
pred = model.predict(test_data)
acc = accuracy_score(test_label, pred) * 100
score = np.append(score,acc)
print('score[{}] = {}%'.format(index,acc))
index+=1
print('mean_accuracy = {}%'.format(np.mean(score)))
本文作者:tiansz
本文链接:https://www.cnblogs.com/tiansz/p/16319620.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步