Spark机器学习基础-特征工程
对连续值处理
0.binarizer/二值化
from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.feature import Binarizer#ml相对于mllib更全一点,更新一点
spark = SparkSession\ .builder\ .appName("BinarizerExample")\ .getOrCreate() continuousDataFrame = spark.createDataFrame([ (0, 1.1), (1, 8.5), (2, 5.2) ], ["id", "feature"]) binarizer = Binarizer(threshold=5.1, inputCol="feature", outputCol="binarized_feature") binarizedDataFrame = binarizer.transform(continuousDataFrame) print("Binarizer output with Threshold = %f" % binarizer.getThreshold()) binarizedDataFrame.show() spark.stop()
结果:
Binarizer output with Threshold = 5.100000 +---+-------+-----------------+ | id|feature|binarized_feature| +---+-------+-----------------+ | 0| 1.1| 0.0| | 1| 8.5| 1.0| | 2| 5.2| 1.0| +---+-------+-----------------+
1.按照给定边界离散化
from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.feature import Bucketizer spark = SparkSession\ .builder\ .appName("BucketizerExample")\ .getOrCreate() splits = [-float("inf"), -0.5, 0.0, 0.5, float("inf")]#-float("inf"):指的是负无穷 data = [(-999.9,), (-0.5,), (-0.3,), (0.0,), (0.2,), (999.9,)] dataFrame = spark.createDataFrame(data, ["features"]) bucketizer = Bucketizer(splits=splits, inputCol="features", outputCol="bucketedFeatures") # 按照给定的边界进行分桶 bucketedData = bucketizer.transform(dataFrame) print("Bucketizer output with %d buckets" % (len(bucketizer.getSplits())-1)) bucketedData.show() spark.stop()
结果:
Bucketizer output with 4 buckets +--------+----------------+ |features|bucketedFeatures| +--------+----------------+ | -999.9| 0.0| | -0.5| 1.0| | -0.3| 1.0| | 0.0| 2.0| | 0.2| 2.0| | 999.9| 3.0| +--------+----------------+
2.quantile_discretizer/按分位数离散化
from __future__ import print_function from pyspark.ml.feature import QuantileDiscretizer from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("QuantileDiscretizerExample")\ .getOrCreate() data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2), (5, 9.2), (6, 14.4)] df = spark.createDataFrame(data, ["id", "hour"]) df = df.repartition(1)#数据量小设置为1个分区,这样不出错!数据量大的话可以设置为多个分区。 # 分成3个桶进行离散化 discretizer = QuantileDiscretizer(numBuckets=3, inputCol="hour", outputCol="result") result = discretizer.fit(df).transform(df) result.show() spark.stop()
结果:
+---+----+------+ | id|hour|result| +---+----+------+ | 0|18.0| 2.0| | 1|19.0| 2.0| | 2| 8.0| 1.0| | 3| 5.0| 0.0| | 4| 2.2| 0.0| | 5| 9.2| 1.0| | 6|14.4| 2.0| +---+----+------+
3.最大最小值幅度缩放
from __future__ import print_function from pyspark.ml.feature import MaxAbsScaler from pyspark.ml.linalg import Vectors from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("MaxAbsScalerExample")\ .getOrCreate() dataFrame = spark.createDataFrame([ (0, Vectors.dense([1.0, 0.1, -8.0]),),#dense表示稠密向量 (1, Vectors.dense([2.0, 1.0, -4.0]),), (2, Vectors.dense([4.0, 10.0, 8.0]),) ], ["id", "features"]) scaler = MaxAbsScaler(inputCol="features", outputCol="scaledFeatures")#最大最小值用于缩放 # 计算最大最小值用于缩放 scalerModel = scaler.fit(dataFrame)#fit与transform分开写,因为fit的数据还要用于测试集的变换 # 缩放幅度到[-1, 1]之间 scaledData = scalerModel.transform(dataFrame) scaledData.select("features", "scaledFeatures").show() spark.stop()
结果:
+--------------+----------------+ | features| scaledFeatures| +--------------+----------------+ |[1.0,0.1,-8.0]|[0.25,0.01,-1.0]| |[2.0,1.0,-4.0]| [0.5,0.1,-0.5]| |[4.0,10.0,8.0]| [1.0,1.0,1.0]| +--------------+----------------+
4.标准化
from __future__ import print_function from pyspark.ml.feature import StandardScaler from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("StandardScalerExample")\ .getOrCreate() dataFrame = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")#libsvm数据格式,适用于存储稀疏数据: [label] [index1]:[value1] [index2]:[value2] … scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures", withStd=True, withMean=False) # 计算均值方差等参数 scalerModel = scaler.fit(dataFrame) # 标准化 scaledData = scalerModel.transform(dataFrame) scaledData.show() spark.stop()
+-----+--------------------+--------------------+ |label| features| scaledFeatures| +-----+--------------------+--------------------+ | 0.0|(692,[127,128,129...|(692,[127,128,129...| | 1.0|(692,[158,159,160...|(692,[158,159,160...| | 1.0|(692,[124,125,126...|(692,[124,125,126...| | 1.0|(692,[152,153,154...|(692,[152,153,154...| | 1.0|(692,[151,152,153...|(692,[151,152,153...| | 0.0|(692,[129,130,131...|(692,[129,130,131...| | 1.0|(692,[158,159,160...|(692,[158,159,160...| | 1.0|(692,[99,100,101,...|(692,[99,100,101,...| | 0.0|(692,[154,155,156...|(692,[154,155,156...| | 0.0|(692,[127,128,129...|(692,[127,128,129...| | 1.0|(692,[154,155,156...|(692,[154,155,156...| | 0.0|(692,[153,154,155...|(692,[153,154,155...| | 0.0|(692,[151,152,153...|(692,[151,152,153...| | 1.0|(692,[129,130,131...|(692,[129,130,131...| | 0.0|(692,[154,155,156...|(692,[154,155,156...| | 1.0|(692,[150,151,152...|(692,[150,151,152...| | 0.0|(692,[124,125,126...|(692,[124,125,126...| | 0.0|(692,[152,153,154...|(692,[152,153,154...| | 1.0|(692,[97,98,99,12...|(692,[97,98,99,12...| | 1.0|(692,[124,125,126...|(692,[124,125,126...| +-----+--------------------+--------------------+ only showing top 20 rows
from __future__ import print_function from pyspark.ml.feature import StandardScaler from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("StandardScalerExample")\ .getOrCreate() dataFrame = spark.createDataFrame([ (0, Vectors.dense([1.0, 0.1, -8.0]),), (1, Vectors.dense([2.0, 1.0, -4.0]),), (2, Vectors.dense([4.0, 10.0, 8.0]),) ], ["id", "features"]) # 计算均值方差等参数 scalerModel = scaler.fit(dataFrame) # 标准化 scaledData = scalerModel.transform(dataFrame) scaledData.show() spark.stop()
结果:
+---+--------------+--------------------+ | id| features| scaledFeatures| +---+--------------+--------------------+ | 0|[1.0,0.1,-8.0]|[0.65465367070797...| | 1|[2.0,1.0,-4.0]|[1.30930734141595...| | 2|[4.0,10.0,8.0]|[2.61861468283190...| +---+--------------+--------------------+
5.添加多项式特征
from __future__ import print_function from pyspark.ml.feature import PolynomialExpansion from pyspark.ml.linalg import Vectors from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("PolynomialExpansionExample")\ .getOrCreate() df = spark.createDataFrame([ (Vectors.dense([2.0, 1.0]),), (Vectors.dense([0.0, 0.0]),), (Vectors.dense([3.0, -1.0]),) ], ["features"]) polyExpansion = PolynomialExpansion(degree=3, inputCol="features", outputCol="polyFeatures") polyDF = polyExpansion.transform(df) polyDF.show(truncate=False) spark.stop()
结果:
+----------+------------------------------------------+ |features |polyFeatures | +----------+------------------------------------------+ |[2.0,1.0] |[2.0,4.0,8.0,1.0,2.0,4.0,1.0,2.0,1.0] | |[0.0,0.0] |[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0] | |[3.0,-1.0]|[3.0,9.0,27.0,-1.0,-3.0,-9.0,1.0,3.0,-1.0]| +----------+------------------------------------------+
0.独热向量编码
from __future__ import print_function from pyspark.ml.feature import OneHotEncoder, StringIndexer from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("OneHotEncoderExample")\ .getOrCreate() df = spark.createDataFrame([ (0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c") ], ["id", "category"]) stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")#类别编码:出现频次越低,数值越大 model = stringIndexer.fit(df) indexed = model.transform(df) encoder = OneHotEncoder(inputCol="categoryIndex", outputCol="categoryVec") encoded = encoder.transform(indexed) encoded.show() spark.stop()
结果:
+---+--------+-------------+-------------+ | id|category|categoryIndex| categoryVec| +---+--------+-------------+-------------+ | 0| a| 0.0|(2,[0],[1.0])| | 1| b| 2.0| (2,[],[])| | 2| c| 1.0|(2,[1],[1.0])| | 3| a| 0.0|(2,[0],[1.0])| | 4| a| 0.0|(2,[0],[1.0])| | 5| c| 1.0|(2,[1],[1.0])| +---+--------+-------------+-------------+
对文本型处理
0.去停用词
from __future__ import print_function from pyspark.ml.feature import StopWordsRemover from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("StopWordsRemoverExample")\ .getOrCreate() sentenceData = spark.createDataFrame([ (0, ["I", "saw", "the", "red", "balloon"]), (1, ["Mary", "had", "a", "little", "lamb"]) ], ["id", "raw"]) remover = StopWordsRemover(inputCol="raw", outputCol="filtered") remover.transform(sentenceData).show(truncate=False)#truncate=False表示没有做截断,长的话可以试着截断观看结果 spark.stop()
结果:
+---+----------------------------+--------------------+ |id |raw |filtered | +---+----------------------------+--------------------+ |0 |[I, saw, the, red, balloon] |[saw, red, balloon] | |1 |[Mary, had, a, little, lamb]|[Mary, little, lamb]| +---+----------------------------+--------------------+
1.Tokenizer
from __future__ import print_function from pyspark.ml.feature import Tokenizer, RegexTokenizer from pyspark.sql.functions import col, udf from pyspark.sql.types import IntegerType from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("TokenizerExample")\ .getOrCreate() sentenceDataFrame = spark.createDataFrame([ (0, "Hi I heard about Spark"), (1, "I wish Java could use case classes"), (2, "Logistic,regression,models,are,neat") ], ["id", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") regexTokenizer = RegexTokenizer(inputCol="sentence", outputCol="words", pattern="\\W")#干掉空格部分,保留非空格部分 countTokens = udf(lambda words: len(words), IntegerType()) tokenized = tokenizer.transform(sentenceDataFrame) tokenized.select("sentence", "words")\ .withColumn("tokens", countTokens(col("words"))).show(truncate=False) regexTokenized = regexTokenizer.transform(sentenceDataFrame) regexTokenized.select("sentence", "words") \ .withColumn("tokens", countTokens(col("words"))).show(truncate=False) spark.stop()
结果:
+-----------------------------------+------------------------------------------+------+ |sentence |words |tokens| +-----------------------------------+------------------------------------------+------+ |Hi I heard about Spark |[hi, i, heard, about, spark] |5 | |I wish Java could use case classes |[i, wish, java, could, use, case, classes]|7 | |Logistic,regression,models,are,neat|[logistic,regression,models,are,neat] |1 | +-----------------------------------+------------------------------------------+------+ +-----------------------------------+------------------------------------------+------+ |sentence |words |tokens| +-----------------------------------+------------------------------------------+------+ |Hi I heard about Spark |[hi, i, heard, about, spark] |5 | |I wish Java could use case classes |[i, wish, java, could, use, case, classes]|7 | |Logistic,regression,models,are,neat|[logistic, regression, models, are, neat] |5 | +-----------------------------------+------------------------------------------+------+
2.count_vectorizer
from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.feature import CountVectorizer spark = SparkSession\ .builder\ .appName("CountVectorizerExample")\ .getOrCreate() df = spark.createDataFrame([ (0, "a b c".split(" ")), (1, "a b b c a".split(" ")) ], ["id", "words"]) cv = CountVectorizer(inputCol="words", outputCol="features", vocabSize=3, minDF=2.0) model = cv.fit(df) result = model.transform(df) result.show(truncate=False) spark.stop()
结果:
+---+---------------+-------------------------+ |id |words |features | +---+---------------+-------------------------+ |0 |[a, b, c] |(3,[0,1,2],[1.0,1.0,1.0])| |1 |[a, b, b, c, a]|(3,[0,1,2],[2.0,2.0,1.0])| +---+---------------+-------------------------+
3.TF-IDF权重
from __future__ import print_function from pyspark.ml.feature import HashingTF, IDF, Tokenizer from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("TfIdfExample")\ .getOrCreate() sentenceData = spark.createDataFrame([ (0.0, "Hi I heard about Spark"), (0.0, "I wish Java could use case classes"), (1.0, "Logistic regression models are neat") ], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words")#Tokenizer适合英文分词,spark中的中文分词效果最好的是NLPIR,jieba效果不是最好的 wordsData = tokenizer.transform(sentenceData) hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20) featurizedData = hashingTF.transform(wordsData) idf = IDF(inputCol="rawFeatures", outputCol="features") idfModel = idf.fit(featurizedData) rescaledData = idfModel.transform(featurizedData) rescaledData.select("label", "features").show() spark.stop()
结果:
+-----+--------------------+ |label| features| +-----+--------------------+ | 0.0|(20,[0,5,9,17],[0...| | 0.0|(20,[2,7,9,13,15]...| | 1.0|(20,[4,6,13,15,18...| +-----+--------------------+
4.n-gram语言模型
from __future__ import print_function from pyspark.ml.feature import NGram from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("NGramExample")\ .getOrCreate() #Hanmeimei loves LiLei #LiLei loves Hanmeimei wordDataFrame = spark.createDataFrame([ (0, ["Hi", "I", "heard", "about", "Spark"]), (1, ["I", "wish", "Java", "could", "use", "case", "classes"]), (2, ["Logistic", "regression", "models", "are", "neat"]) ], ["id", "words"]) ngram = NGram(n=2, inputCol="words", outputCol="ngrams") ngramDataFrame = ngram.transform(wordDataFrame) ngramDataFrame.select("ngrams").show(truncate=False) spark.stop()
结果:
+------------------------------------------------------------------+ |ngrams | +------------------------------------------------------------------+ |[Hi I, I heard, heard about, about Spark] | |[I wish, wish Java, Java could, could use, use case, case classes]| |[Logistic regression, regression models, models are, are neat] | +------------------------------------------------------------------+
高级变换
0.SQL变换
from __future__ import print_function from pyspark.ml.feature import SQLTransformer from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("SQLTransformerExample")\ .getOrCreate() df = spark.createDataFrame([ (0, 1.0, 3.0), (2, 2.0, 5.0) ], ["id", "v1", "v2"]) sqlTrans = SQLTransformer( statement="SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__") sqlTrans.transform(df).show() spark.stop()
结果:
+---+---+---+---+----+ | id| v1| v2| v3| v4| +---+---+---+---+----+ | 0|1.0|3.0|4.0| 3.0| | 2|2.0|5.0|7.0|10.0| +---+---+---+---+----+
1.R公式变换
from __future__ import print_function from pyspark.ml.feature import RFormula from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("RFormulaExample")\ .getOrCreate() dataset = spark.createDataFrame( [(7, "US", 18, 1.0), (8, "CA", 12, 0.0), (9, "NZ", 15, 0.0)], ["id", "country", "hour", "clicked"]) formula = RFormula( formula="clicked ~ country + hour", featuresCol="features", labelCol="label") output = formula.fit(dataset).transform(dataset) output.select("features", "label").show() spark.stop()
结果:
+--------------+-----+ | features|label| +--------------+-----+ |[0.0,0.0,18.0]| 1.0| |[1.0,0.0,12.0]| 0.0| |[0.0,1.0,15.0]| 0.0| +--------------+-----+