二叉树 【转】http://blog.csdn.net/sjf0115/article/details/8645991

//二叉树


#include<iostream>
#include<stack>
#include<queue>
using namespace std;

//二叉树结点
typedef struct BiTNode{
    char data;
    struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;

//按先序序列创建二叉树
int CreateBiTree(BiTree &T){

    char data;
    //‘#’表示空树
    cin>>data;
    if(data == '#'){
        T = NULL;
    }
    else{
        T = (BiTree)malloc(sizeof(BiTNode));

        T->data = data;

        CreateBiTree(T->lchild);

        CreateBiTree(T->rchild);
    }
    return 0;
}
//输出
void Visit(BiTree T){
    if(T->data != '#'){
        printf("%c ",T->data);
    }
}

//先序遍历
void PreOrder(BiTree T){
    if(T != NULL){
        //访问根节点
        Visit(T);
        //访问左子结点
        PreOrder(T->lchild);
        //访问右子结点
        PreOrder(T->rchild);
    }
}
//中序遍历  
void InOrder(BiTree T){  
    if(T != NULL){  
        //访问左子结点  
        InOrder(T->lchild);  
        //访问根节点  
        Visit(T);  
        //访问右子结点  
        InOrder(T->rchild);  
    }  
}  
//后序遍历
void PostOrder(BiTree T){
    if(T != NULL){
        //访问左子结点
        PostOrder(T->lchild);
        //访问右子结点
        PostOrder(T->rchild);
        //访问根节点
        Visit(T);
    }
}

//树的高度
int BinTreeDepth(BiTree t)
{
    int h,h1,h2;
    if(t == NULL)    return 0;
    else
    {
        h1 = BinTreeDepth(t->lchild);
        h2 = BinTreeDepth(t->rchild);
        h = max(h1,h2) + 1;
        return h;
    }

}

//求二叉树中节点的最大距离
void Find_Dis(BiTree t)
{

}

//释放树空间
void DestroyBinTree(BiTree t)
{
    if(t==NULL) return;
    DestroyBinTree(t->lchild); 
    DestroyBinTree(t->rchild);
    t->lchild=NULL;
    t->rchild=NULL;
    free(t);
}
//先序遍历(非递归)
//思路:访问T->data后,将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,再先序遍历T的右子树。

void PreOrder2(BiTree T){
    stack<BiTree> stack;
    //p是遍历指针
    BiTree p = T;
    //栈不空或者p不空时循环
    while(p || !stack.empty()){
        if(p != NULL){
            //存入栈中
            stack.push(p);
            //访问根节点
            printf("%c ",p->data);
            //遍历左子树
            p = p->lchild;
        }
        else{
            //退栈
            p = stack.top();
            stack.pop();
            //访问右子树
            p = p->rchild;
        }
    }//while
}
//中序遍历(非递归)
//思路:T是要遍历树的根指针,中序遍历要求在遍历完左子树后,访问根,再遍历右子树。先将T入栈,遍历左子树;
//遍历完左子树返回时,栈顶元素应为T,出栈,访问T->data,再中序遍历T的右子树。

void InOrder2(BiTree T){
    stack<BiTree> stack;
    //p是遍历指针
    BiTree p = T;
    //栈不空或者p不空时循环
    while(p || !stack.empty()){
        if(p != NULL){
            //存入栈中
            stack.push(p);
            //遍历左子树
            p = p->lchild;
        }
        else{
            //退栈,访问根节点
            p = stack.top();
            printf("%c ",p->data);
            stack.pop();
            //访问右子树
            p = p->rchild;
        }
    }//while
}

//后序遍历(非递归)
typedef struct BiTNodePost{
    BiTree biTree;
    char tag;
}BiTNodePost,*BiTreePost;
//后序遍历
void PostOrder2(BiTree T){
    stack<BiTreePost> stack;
    //p是遍历指针
    BiTree p = T;
    BiTreePost BT;
    //栈不空或者p不空时循环
    while(p != NULL || !stack.empty()){
        //遍历左子树
        while(p != NULL){
            BT = (BiTreePost)malloc(sizeof(BiTNodePost));
            BT->biTree = p;
            //访问过左子树
            BT->tag = 'L';
            stack.push(BT);
            p = p->lchild;
        }
        //左右子树访问完毕访问根节点
        while(!stack.empty() && (stack.top())->tag == 'R'){
            BT = stack.top();
            //退栈
            stack.pop();
            BT->biTree;
            printf("%c ",BT->biTree->data);
        }
        //遍历右子树
        if(!stack.empty()){
            BT = stack.top();
            //访问过右子树
            BT->tag = 'R';
            p = BT->biTree;
            p = p->rchild;
        }
    }//while
}
//层次遍历
void LevelOrder(BiTree T){
    BiTree p = T;
    //队列
    queue<BiTree> queue;
    //根节点入队
    queue.push(p);
    //队列不空循环
    while(!queue.empty()){
        //对头元素出队
        p = queue.front();
        //访问p指向的结点
        printf("%c ",p->data);
        //退出队列
        queue.pop();
        //左子树不空,将左子树入队
        if(p->lchild != NULL){
            queue.push(p->lchild);
        }
        //右子树不空,将右子树入队
        if(p->rchild != NULL){
            queue.push(p->rchild);
        }
    }
}
int main()
{
    BiTree T;
    cout<<"输入二叉树"<<endl;
    CreateBiTree(T);

    printf("先序遍历:\n");
    PreOrder(T);
    printf("\n");

    printf("先序遍历(非递归):\n");
    PreOrder2(T);
    printf("\n");

    printf("中序遍历:\n");
    InOrder(T);
    printf("\n");

    printf("中序遍历(非递归):\n");
    InOrder2(T);
    printf("\n");

    printf("后序遍历:\n");
    PostOrder(T);
    printf("\n");

    printf("后序遍历(非递归):\n");
    PostOrder2(T);
    printf("\n");

    printf("层次遍历:\n");
    LevelOrder(T);
    printf("\n");

    cout<<"树的高度为:"<<BinTreeDepth(T)<<endl<<endl;

    cout <<"释放树空间"<<endl<<endl;
    DestroyBinTree(T);

    cout<<"求二叉树中节点的最大距离"<<endl;
    //cout<<Find_Dis(T)<<endl;
    system("pause");
    return 0;
}

TestCase:ABC##DE#G##F###

 

posted @ 2015-05-15 23:06  M_Kepler  阅读(199)  评论(0编辑  收藏  举报