上一页 1 ··· 44 45 46 47 48 49 50 51 52 ··· 75 下一页
摘要: 聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。所有资料中还是Andrew Ng介绍的明白。首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有类的中心位置。公式一:意思就是求出所有数据和初始化的随机数据的距离,然后找出距离每个初始数据最近的数 阅读全文
posted @ 2013-04-24 20:15 Dsp Tian 阅读(167688) 评论(46) 推荐(15) 编辑
摘要: 将彩色图像RGB三色分离出来是一个很有意义的操作。用到void split(const Mat& mtx,vector<Mat>& mv),void merge(const vector<Mat>& mv,Mat& dst)这两个函数。#include "cv.h"#include "highgui.h"#include <iostream>#include <vector>using namespace std;using namespace cv;int main(int 阅读全文
posted @ 2013-04-23 23:11 Dsp Tian 阅读(10559) 评论(1) 推荐(0) 编辑
摘要: 图像区域分裂可以将图像中相似的区域归为一个子区域,否则这个区域分裂。分裂的步骤还是很好理解的。对一个图像而言,首先确定一个分裂准则,如果当前图像区域中有像素没有满足这个准则,那么本区域继续分裂,否则分裂停止。我这里用的准则就是当前像素灰度是否和本区域平均灰度差距过大,如果相差很大则继续分裂,否则分裂停止并将本区域赋值为本区域平均值。分裂具体步骤:1.输入图像作为初始区域。2.判断本区域是否有像素灰度与本区域平均灰度差距过大。若有,则本区域分解为四部分,对每部分继续执行步骤2;若无,结束。(显然的递归嘛,当然,递归和迭代一般是能互换的)先看看分裂效果:matlab代码如下:main.mclear 阅读全文
posted @ 2013-04-23 20:36 Dsp Tian 阅读(6405) 评论(0) 推荐(0) 编辑
摘要: 三种常见的边缘检测算子。#include "cv.h"#include "highgui.h"using namespace cv;int main(int argc, char* argv[]){ Mat src = imread("misaka.jpg"); Mat dst; //输入图像 //输出图像 //输入图像颜色通道数 //x方向阶数 //y方向阶数 Sobel(src,dst,src.depth(),1,1); imwrite("sobel.jpg... 阅读全文
posted @ 2013-04-20 17:29 Dsp Tian 阅读(34822) 评论(2) 推荐(2) 编辑
摘要: 图像的基本形态学操作。#include "cv.h"#include "highgui.h"using namespace cv;int main(int argc, char* argv[]){ Mat src = imread("misaka.jpg"); Mat dst; //输入图像 //输出图像 //单元大小,这里是5*5的8位单元 //腐蚀位置,为负值取核中心 //腐蚀次数两次 erode(src,dst,Mat(5,5,CV_8U),Point(-1,-... 阅读全文
posted @ 2013-04-20 16:29 Dsp Tian 阅读(26810) 评论(0) 推荐(0) 编辑
摘要: 四种经典滤波算法,在opencv文档中都能找到的,熟悉一下调用规范。#include "cv.h"#include "highgui.h"#include <iostream>using namespace std;using namespace cv;int main(int argc, char* argv[]){ Mat src = imread("misaka.jpg"); Mat dst; //参数是按顺序写的 //高斯滤波 //src:输入图像 //dst:输出图像 //Size(5,... 阅读全文
posted @ 2013-04-20 00:46 Dsp Tian 阅读(62913) 评论(4) 推荐(1) 编辑
摘要: opencv这个图像库两年前就会用了,本科毕业设计就是用的他,不过其中有很多函数直到现在我也没怎么用过。关于这个库的学习,我自己的目标是只需要学会怎样调用库函数完成目标就可以了,至于原理性的东西我就不去深究了,原理的东西我会在matlab中实现的。平台是ubuntu+opencv2,具体版本我忘了。不过2之后的应该都可以。第一个先练手的程序,我尽量用C++版的:#include "cv.h"#include "highgui.h"#include <iostream>using namespace std;using namespace cv 阅读全文
posted @ 2013-04-18 23:18 Dsp Tian 阅读(15367) 评论(1) 推荐(1) 编辑
摘要: 主要是用来平滑图像的,克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的(和双边滤波很像)。通常我们有将图像看作矩阵的,看作图的,看作随机过程的,记得过去还有看作力场的。这次新鲜,将图像看作热量场了。每个像素看作热流,根据当前像素和周围像素的关系,来确定是否要向周围扩散。比如某个邻域像素和当前像素差别较大,则代表这个邻域像素很可能是个边界,那么当前像素就不向这个方向扩散了,这个边界也就得到保留了。先看下效果吧:具体的推导公式都是热学上的,自己也不太熟悉,感兴趣的可以去看原论文,引用量超7000吶。我这里只介绍一下最终结论用到的公式。主要迭代方程如下:I就是图像了,因为是个迭代公式, 阅读全文
posted @ 2013-04-18 21:07 Dsp Tian 阅读(18238) 评论(9) 推荐(3) 编辑
摘要: 自动聚焦需要评判图像的模糊或者清晰程度。当然,真正聚焦还需要配合硬件,我现在已经不搞硬件了,所以也就不去关心那一方面了。主要有三种评判方法:1.灰度方差法评判图像灰度的变化程度,我先使用了全局灰度方差,不过效果不好。又实验了局部灰度方差,不过由于运算量的问题,也没做出什么结果。2.边缘评判法这个很简单了,通过对图像进行边缘检测,比如sobel,prewitt,roberts等等各种边缘检测吧,然后找出边缘最丰富的那一张图片。3.能量法图像细节越丰富,傅里叶分解后的频率肯定越多,所以能量也能作为一种评判标准。我这里的实验图像序列在这里可以下到。实验结果,图中红色是sobel评判,绿色是二阶拉普拉 阅读全文
posted @ 2013-04-16 16:57 Dsp Tian 阅读(6325) 评论(0) 推荐(0) 编辑
摘要: 关于小波变换我只是有一个很朴素了理解。不过小波变换可以和傅里叶变换结合起来理解。傅里叶变换是用一系列不同频率的正余弦函数去分解原函数,变换后得到是原函数在正余弦不同频率下的系数。小波变换使用一系列的不同尺度的小波去分解原函数,变换后得到的是原函数在不同尺度小波下的系数。不同的小波通过平移与尺度变换分解,平移是为了得到原函数的时间特性,尺度变换是为了得到原函数的频率特性。小波变换步骤:1.把小波w(t)和原函数f(t)的开始部分进行比较,计算系数C。系数C表示该部分函数与小波的相似程度。2.把小波向右移k单位,得到小波w(t-k),重复1。重复该部知道函数f结束.3.扩展小波w(t),得到小波w 阅读全文
posted @ 2013-04-12 16:56 Dsp Tian 阅读(91587) 评论(23) 推荐(6) 编辑
上一页 1 ··· 44 45 46 47 48 49 50 51 52 ··· 75 下一页