09 2023 档案
摘要:整体网络结构如下: 最关键的改进是使用了一个叫深度可分离卷积的结构,将原始的3*3卷积升通道的操作分解成了两部分: 第一部分是保持通道不变的情况下做3*3卷积。 第二部分是使用1*1的卷积做通道提升操作。 结果就是能够减少很多的运算量。 下面依然是一个猫狗大战的训练程序,并且增加了断点续练的部分处理
阅读全文
摘要:ResNet也是相当经典的卷积神经网络,这里实现了18,34,50,101和152。 网络结构如下: 这里18和34用到的block是一样的,两层卷积。50,101和152用到的block是一样的,三层卷积,不过用到了1*1卷积来调整数据通道数。 猫狗大战的训练代码如下: import torch
阅读全文
摘要:VGGNet也是一个比较经典的深度学习网络模型。 模型结构如下: 这里选用了D模型,同样用该模型做个了个猫狗大战的训练,不过为了提高速度,我把图像resize为112*112了,相应的flatten之后就成56*3*3了,所以和原始模型有点不一样。 import torch import torch
阅读全文