深度学习(超分辨率)

简单训练了一个模型,可以实现超分辨率效果。模型在这里

模型用了一些卷积层,最后接一个PixelShuffle算子。

训练数据是原始图像resize后的亮度通道。

标签是原始图像的亮度通道。

损失函数设为MSE。

代码如下:

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize
from PIL import Image
from os import listdir
from os.path import join
import numpy as np

crop_size = 256
upscale_factor = 3
crop_size = crop_size - (crop_size % upscale_factor)

input_transformer= Compose([
        CenterCrop(crop_size),
        Resize(crop_size // upscale_factor),
        ToTensor()])

target_transform =Compose([
        CenterCrop(crop_size),
        ToTensor()])

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        self.relu = nn.ReLU()
        self.conv1 = nn.Conv2d(1, 64, 5, 1, 2)
        self.conv2 = nn.Conv2d(64, 64, 3, 1, 1)
        self.conv3 = nn.Conv2d(64, 32, 3, 1, 1)
        self.conv4 = nn.Conv2d(32, upscale_factor ** 2, 3, 1, 1)
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.conv2(x))
        x = self.relu(self.conv3(x))
        x = self.pixel_shuffle(self.conv4(x))       
        return x

class SRData(Dataset):
    def __init__(self, image_dir):
        self.image_filenames = [join(image_dir, x) for x in listdir(image_dir)]

    def __len__(self):
        return len(self.image_filenames)

    def __getitem__(self, index):
        image = Image.open(self.image_filenames[index]).convert('YCbCr')
        y, _, _ = image.split()

        img = input_transformer(y)
        lab = target_transform(y)
        return img, lab

def train():
    num_epochs = 2

    model = Net()
    optimizer = optim.Adam(model.parameters(), lr=0.01)
    criterion = nn.MSELoss()

    train_dataset = SRData('./dataset')
    train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model.to(device)
    model.train()

    for epoch in range(num_epochs):
        running_loss = 0.0
        for images, labels in train_loader:

            images = images.to(device)
            labels = labels.to(device)

            outputs = model(images)
            loss = criterion(outputs, labels)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")

    torch.save(model, 'super_res.pth')

def test():

    img = Image.open("test.jpg").convert('YCbCr')
    y, cb, cr = img.split()

    model = torch.load("super_res.pth")
    img_to_tensor = ToTensor()
    input = img_to_tensor(y).view(1, 1, y.size[1], y.size[0])

    model = model.cuda()
    input = input.cuda()

    out = model(input)
    out = out.cpu()
    out_img_y = out[0].detach().numpy()
    out_img_y *= 255.0
    out_img_y = out_img_y.clip(0, 255)
    out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L')

    out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
    out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
    out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB')

    out_img.save("out.jpg")

if __name__ == "__main__":
  #  train()
    test()
复制代码

效果如下:

原图:

结果:

posted @   Dsp Tian  阅读(19)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
历史上的今天:
2017-12-21 linux查看某IP尝试连接成功和失败次数
点击右上角即可分享
微信分享提示