深度学习(UNet)

和FCN类似,UNet是另一个做语义分割的网络,网络从输入到输出中间呈一个U型而得名。

相比于FCN,UNet增加了更多的中间连接,能够更好处理不同尺度上的特征。

网络结构如下:

下面代码是用UNet对VOC数据集做的语义分割。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms
import os
from PIL import Image
import numpy as np

transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

colormap = [[0,0,0],[128,0,0],[0,128,0], [128,128,0], [0,0,128],
            [128,0,128],[0,128,128],[128,128,128],[64,0,0],[192,0,0],
            [64,128,0],[192,128,0],[64,0,128],[192,0,128],
            [64,128,128],[192,128,128],[0,64,0],[128,64,0],
            [0,192,0],[128,192,0],[0,64,128]]

class VOCData(Dataset):

    def __init__(self, root):
        super(VOCData, self).__init__()

        self.lab_path = root + 'VOC2012/SegmentationClass/'
        self.img_path = root + 'VOC2012/JPEGImages/'

        self.lab_names = self.get_file_names(self.lab_path)

        self.img_names=[]
        for file in self.lab_names:
            self.img_names.append(file.replace('.png', '.jpg'))

        self.cm2lbl = np.zeros(256**3) 
        for i,cm in enumerate(colormap): 
            self.cm2lbl[cm[0]*256*256+cm[1]*256+cm[2]] = i

        self.image = []
        self.label = []
        for i in range(len(self.lab_names)):
            image = Image.open(self.img_path+self.img_names[i]).convert('RGB')
            image = transform(image)
        
            label = Image.open(self.lab_path+self.lab_names[i]).convert('RGB').resize((256,256))
            label = torch.from_numpy(self.image2label(label))

            self.image.append(image)
            self.label.append(label)

    def __len__(self):
        return len(self.image)

    def __getitem__(self, idx):
        return self.image[idx], self.label[idx]

    def get_file_names(self,directory):
        file_names = []
        for file_name in os.listdir(directory):
            if os.path.isfile(os.path.join(directory, file_name)):
                file_names.append(file_name)
        return file_names

    def image2label(self,im):
        data = np.array(im, dtype='int32')
        idx = data[:, :, 0] * 256 * 256 + data[:, :, 1] * 256 + data[:, :, 2]
        return np.array(self.cm2lbl[idx], dtype='int64')

class convblock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(convblock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)        
        return x

class Unet(nn.Module):
    def __init__(self, num_classes):
        super(Unet, self).__init__()
        self.conv_block1 = convblock(3,64)
        self.conv_block2 = convblock(64,128)
        self.conv_block3 = convblock(128,256)
        self.conv_block4 = convblock(256,512)
        self.conv_block5 = convblock(512,1024)

        self.upsample1 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2, padding=0)
        self.upsample2 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2, padding=0)
        self.upsample3 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2, padding=0)
        self.upsample4 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2, padding=0)

        self.conv_block6 = convblock(1024,512)
        self.conv_block7 = convblock(512,256)
        self.conv_block8 = convblock(256,128)
        self.conv_block9 = convblock(128,64)

        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv_out = convblock(64,num_classes)

    def forward(self, x):
        x1 = self.conv_block1(x)  
        x = self.maxpool(x1) 

        x2 = self.conv_block2(x) 
        x = self.maxpool(x2)

        x3 = self.conv_block3(x)
        x = self.maxpool(x3)

        x4 = self.conv_block4(x)
        x = self.maxpool(x4)

        x = self.conv_block5(x)

        x = self.upsample1(x)
        x = torch.cat([x4,x],dim=1)
        x = self.conv_block6(x)

        x = self.upsample2(x)
        x = torch.cat([x3,x],dim=1)
        x = self.conv_block7(x)

        x = self.upsample3(x)
        x = torch.cat([x2,x],dim=1)
        x = self.conv_block8(x)

        x = self.upsample4(x)
        x = torch.cat([x1,x],dim=1)
        x = self.conv_block9(x)

        x = self.conv_out(x)

        return x

def train():
    train_dataset = VOCData(root='./VOCdevkit/')
    train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)

    net = Unet(21)

    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
    criterion = nn.CrossEntropyLoss()

    net.to(device)
    net.train()

    num_epochs = 100
    for epoch in range(num_epochs):

        loss_sum = 0
        img_sum = 0
        for inputs, labels in train_loader:
            
            inputs =  inputs.to(device)
            labels =  labels.to(device)

            outputs = net(inputs)
            loss = criterion(outputs, labels)   

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            loss_sum += loss.item()
            img_sum += inputs.shape[0]

        print('epochs:',epoch,loss_sum / img_sum )
    torch.save(net.state_dict(), 'unet.pth')


def val():
    net = Unet(21)
    net.load_state_dict(torch.load('unet.pth'))

    net.to(device)
    net.eval()

    image = Image.open('./VOCdevkit/VOC2012/JPEGImages/2012_001064.jpg').convert('RGB')
    image = transform(image).unsqueeze(0).to(device)

    out = net(image).squeeze(0)
    ToPIL= transforms.ToPILImage()
    maxind = torch.argmax(out,dim=0)
    outimg = torch.zeros([3,256,256])
    for y in range(256):
        for x in range(256):
            outimg[:,x,y] = torch.from_numpy(np.array(colormap[maxind[x,y]]))

    re = ToPIL(outimg)
    re.show()


if __name__ == "__main__":
    train()
    #val()
posted @ 2024-10-01 15:10  Dsp Tian  阅读(139)  评论(0编辑  收藏  举报