深度学习(VGGNet)

VGGNet也是一个比较经典的深度学习网络模型。

模型结构如下:

这里选用了D模型,同样用该模型做个了个猫狗大战的训练,不过为了提高速度,我把图像resize为112*112了,相应的flatten之后就成56*3*3了,所以和原始模型有点不一样。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from PIL import Image

# 定义VGGNet模型
class VGGNet(nn.Module):
    def __init__(self, num_classes=2):
        super(VGGNet, self).__init__()
        # VGGNet的卷积层部分由多个卷积块组成
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        # VGGNet的全连接层部分
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(512 * 3 * 3, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x


class CustomDataset(Dataset):
    def __init__(self, image_folder, transform=None):
        self.image_folder = image_folder
        self.transform = transform

    def __len__(self):
        return 25000

    def __getitem__(self, index):
        image_name = str(index+1)+".jpg"
        image = Image.open(self.image_folder + '/' +
                           image_name).convert('RGB')
        image = self.transform(image)

        if index < 12500:
            return image, 0  # cat
        else:
            return image, 1  # dog


num_epochs = 10

# 创建VGGNet模型和优化器
model = VGGNet()

# 加入L2正则化操作
regularization = 0.001
for param in model.parameters():
    param.data = param.data + regularization * torch.randn_like(param)

optimizer = optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.CrossEntropyLoss()

# 定义训练和测试数据集的转换方式
transform = transforms.Compose([
    transforms.Resize((112, 112)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

# 加载数据集并进行训练
train_dataset = CustomDataset('./cat_vs_dog/train', transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model.to(device)

for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    correct = 0
    total = 0
    for images, labels in train_loader:

        images = images.to(device)
        labels = labels.to(device)

        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}, Accuracy: {(100 * correct / total):.2f}%")

print('Training finished.')

# 保存模型
torch.save(model.state_dict(), 'vggnet.pth')
posted @ 2023-09-06 22:04  Dsp Tian  阅读(38)  评论(0编辑  收藏  举报