深度学习(AlexNet)

AlexNet是另外一个比较经典的深度学习网络模型。

模型结构如下:

 

这里用该模型做个了个猫狗大战的训练,测试与c++测试和上一篇类似。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import ToTensor
from PIL import Image

# 自定义AlexNet模型
class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 96, kernel_size=11, stride=4)
        self.conv2 = nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2)
        self.conv3 = nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1)
        self.conv4 = nn.Conv2d(384, 384, kernel_size=3, stride=1, padding=1)
        self.conv5 = nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1)

        self.fc1 = nn.Linear(256*6*6, 4096)
        self.fc2 = nn.Linear(4096, 4096)
        self.fc3 = nn.Linear(4096, 2)

    def forward(self, x):
        x = torch.relu(self.conv1(x))            # 227*227   -> 96*55*55
        x = torch.max_pool2d(x, 3, stride=2)     # 96*55*55  -> 96*27*27
        x = torch.relu(self.conv2(x))            # 96*27*27  -> 256*27*27
        x = torch.max_pool2d(x, 3, stride=2)     # 256*27*27 -> 256*13*13
        x = torch.relu(self.conv3(x))            # 256*13*13 -> 384*13*13
        x = torch.relu(self.conv4(x))            # 384*13*13 -> 384*13*13
        x = torch.relu(self.conv5(x))            # 384*13*13 -> 256*13*13
        x = torch.max_pool2d(x, 3, stride=2)     # 256*13*13 -> 256*6*6
        x = x.view(x.size(0), -1)                # 256*6*6   -> 9216
        x = torch.relu(self.fc1(x))              # 9216      -> 4096
        x = torch.relu(self.fc2(x))              # 4096      -> 4096
        x = self.fc3(x)                          # 4096      -> 2
        return x

# 自定义数据集类
class CustomDataset(Dataset):
    def __init__(self, image_folder, transform=None):
        self.image_folder = image_folder
        self.transform = transform

    def __len__(self):
        return 25000

    def __getitem__(self, index):
        image_name = str(index+1)+".jpg"
        image = Image.open(self.image_folder + '/' +
                           image_name).convert('L').resize((227, 227))

        if self.transform:
            image = self.transform(image)

        #print(index)
        if index < 12500:
            return image, 0  # cat
        else:
            return image, 1  # dog


num_epochs = 10
# 创建AlexNet模型和优化器
model = AlexNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

# 加载数据集并进行训练
train_dataset = CustomDataset(
    './cat_vs_dog/train', transform=ToTensor())
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    correct = 0
    total = 0
    for images, labels in train_loader:

        images = images.to(device)
        labels = labels.to(device)

        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}, Accuracy: {(100 * correct / total):.2f}%")

print('Training finished.')

# 保存模型
torch.save(model.state_dict(), 'alexnet.pth')
posted @ 2023-08-31 20:45  Dsp Tian  阅读(27)  评论(0编辑  收藏  举报