mathematica练习程序(第二章 初等代数运算)
习题:
代码如下:
1. Expand[(x + 1) (x^2 - 2 x + 3)] Expand[(3 a - 2) (a - 1) + (a + 1) (a + 2)] Expand[x (y - z) + y (z - x) + z (x - y)] Expand[(2 x^2 - 1) (x - 4) - (x^2 + 3) (2 x - 5)] 2. x = -4; (x - 2) (x^2 + 2 x + 4) + (x + 5) (x^2 - 5 x + 25) y = 1/2; (y - 2) (y^2 - 6 y - 9) - y (y^2 - 2 y - 15) 3. Clear[x] Factor[x^5 - x^3] Factor[x^4 - y^4] Factor[16 - x^4] Factor[x^3 - 6 x^2 + 11 x - 6] Factor[(x + y)^2 - 10 (x + y) + 25] Factor[x^2/3 + xy + y^2] Factor[3 a x + 4 b y + 4 a y + 3 b x] Factor[x^4 + 4 x^3 - 19 x^2 - 46 x + 120] 4. Factor[(x^2 + y^2 - z^2 + 2 x y)/(x^2 - y^2 + z^2 - 2 x z)] Factor[(a x^3 - a y^3)/(x^2 - y^2)] 5. Factor[(x^2 + 2 x + 4)/(x^2 + 4 x + 4) / ((x^3 - 8)/(3 x + 6)) / (1/(x^2 - 4))] Factor[1/(x + 1) - (x + 3) (x^2 - 2 x + 1)/((x^2 - 1) (x^2 + 4 x + 3))] Factor[a/((a - b) (a - c)) + b/((b - c) (b - a)) + c/((c - a) (c - b))] N[(2 Sqrt[2] + 3 Sqrt[3])/(3 Sqrt[2] - 2 Sqrt[3])] 6. Clear[y] Solve[(y - 3)^2 - (y + 3)^3 == 9 y (1 - 2 y), y] Solve[3 x^2 + 5 (2 x + 1) == 0, x] Solve[a b x^2 + (a^4 + b^4) x + a^3 b^3 == 0, x] Solve[x^2 - (2 m + 1) x + m^2 + m == 0, x] Solve[{4 x^2 - 9 y^2 == 15, 2 x - 3 y == 15}, {x, y}] Solve[{x^2 + 2 x y + y^2 == 9, (x - y^2 - 3 (x - y) - 10 == 0)}, {x, y}] Solve[{Sqrt[3] x + Sqrt[3] y == Sqrt[7], Sqrt[6] x - Sqrt[7] == Sqrt[5]}, {x, y}]